Реферат: Баллистика и баллистическое движение

к этому углу, определяет tg и соответственно угол :

tg =.

При равномерном движении по оси X проекция скорости движения vостаётся неизменной и равной проекции начальной скорости v:

v= vcos.

Зависимость v(t) определяется формулой:

v= v+ at.

в которую следует подставить:

v= vsin, a= -g.

Тогда

v = vsin - gt.

Графики зависимости проекций скорости от времени приведены на рис№2.

(рис №2).

В любой точке траектории проекция скорости на ось X остается постоянной. По мере подъема снаряда проекция скорости на ось У уменьшается по линейному закону. При t = 0 она равна = sin а. Найдем промежуток времени, через который проекция этой скорости станет равна нулю:

0 = vsin- gt , t =

Полученный результат совпадает со временем подъема снаряда на максимальную высоту. В верхней точке траектории вертикальная компонента скорости равна нулю.

Следовательно, тело больше не поднимается. При t > проекция скорости

v становится отрицательной. Значит, эта составляющая скорости направлена противоположно оси Y, т. е. тело начинает падать вниз (рис.№3).

(рис№3)

Так как в верхней точке траектории v = 0, то скорость снаряда равна:

v = v= vcos

г) траектория движения тела в поле тяжести.

Рассмотрим основные параметры траектории снаряда, вылетающего с начальной скоростью v из орудия, направленного под углом α к горизонту (рис №4).

(рис №4)

Движение снаряда происходит в вертикальной плоскости XY, содержащей v.

Выберем начало отсчёта в точке вылета снаряда.

В евклидовом физическом пространстве перемещения тела по координатным

осям X и Y можно рассматривать независимо.

Ускорение свободного падения g направлено вертикально вниз, поэтому по оси X движение будет равномерным.

Это означает, что проекция скорости v остаётся постоянной, равной её значению в начальный момент времени v.

К-во Просмотров: 962
Бесплатно скачать Реферат: Баллистика и баллистическое движение