Реферат: Баллистика и баллистическое движение
По оси Y движение является равномерным, так как вектор ускорения свободного падения g постоянен.
Закон равнопеременного движения снаряда по оси Y можно представить в следующем виде: y = y+vt + . (6)
Криволинейное баллистическое движение тела можно рассматривать как результат сложения двух прямолинейных движений: равномерного движения
по оси X и равнопеременного движения по оси Y.
В выбранной системе координат:
x=0. y=0.
v= vcos α. v= vsin α.
Ускорение свободного падения направлено противоположно оси Y, поэтому
а= -g.
Подставляя x, y, v,v,ав (5) и (6), получаем закон баллистического
движения в координатной форме, в виде системы двух уравнений:
(7)
Уравнение траектории снаряда, или зависимость y(x), можно получить,
исключая из уравнений системы время. Для этого из первого уравнения системы найдём:
t =.
Подставляя его во второе уравнение получаем:
y = vsin α - .
Сокращая v в первом слагаемом и учитывая, что = tg α, получаем
уравнение траектории снаряда: y = x tg α – .(8)
д) Траектория баллистического движения.
Построим баллистическую траекторию (8).
Графиком квадратичной функции, как известно, является парабола. В рассматриваемом случае парабола проходит через начало координат,
так как из (8) следует, что у = 0 при х = 0. Ветви параболы направлены вниз, так как коэффициент ( - ) при x меньше нуля. (Рис №5).
(рис №5)
Определим основные параметры баллистического движения: время подъема на максимальную высоту, максимальную высоту, время и дальность полета. Вследствие независимости движений по координатным осям подъем снаряда по вертикали определяется только проекцией начальной скорости на ось Y. В соответствии с формулой: , полученной для тела, брошенного вверх с начальной скоростью , время подъема снаряда на максимальную высоту равно:
t=
Максимальная высота подъема может быть рассчитана по формуле ,
если подставить вместо :
y=