Реферат: Баллистика и баллистическое движение
к этому углу, определяет tg и соответственно угол :
tg =.
При равномерном движении по оси X проекция скорости движения vостаётся неизменной и равной проекции начальной скорости v:
v= vcos.
Зависимость v(t) определяется формулой:
v= v+ at.
в которую следует подставить:
v= vsin, a= -g.
Тогда
v = vsin - gt.
Графики зависимости проекций скорости от времени приведены на рис№2.
(рис №2).
В любой точке траектории проекция скорости на ось X остается постоянной. По мере подъема снаряда проекция скорости на ось У уменьшается по линейному закону. При t = 0 она равна = sin а. Найдем промежуток времени, через который проекция этой скорости станет равна нулю:
0 = vsin- gt , t =
Полученный результат совпадает со временем подъема снаряда на максимальную высоту. В верхней точке траектории вертикальная компонента скорости равна нулю.
Следовательно, тело больше не поднимается. При t > проекция скорости
v становится отрицательной. Значит, эта составляющая скорости направлена противоположно оси Y, т. е. тело начинает падать вниз (рис.№3).
(рис№3)
Так как в верхней точке траектории v = 0, то скорость снаряда равна:
v = v= vcos
г) траектория движения тела в поле тяжести.
Рассмотрим основные параметры траектории снаряда, вылетающего с начальной скоростью v из орудия, направленного под углом α к горизонту (рис №4).
(рис №4)
Движение снаряда происходит в вертикальной плоскости XY, содержащей v.
Выберем начало отсчёта в точке вылета снаряда.
В евклидовом физическом пространстве перемещения тела по координатным
осям X и Y можно рассматривать независимо.
Ускорение свободного падения g направлено вертикально вниз, поэтому по оси X движение будет равномерным.
Это означает, что проекция скорости v остаётся постоянной, равной её значению в начальный момент времени v.