Реферат: Баричев С. Криптография без секретов

и наложим на них ключ (используя таблицу Вижинера):

H+К=Ч, Е+Л=Р и т.д.

Получаем зашифрованный (ЗТ1) текст:

ЧРЭЗ ХРБЙ ПЭЭЩ ДМЕЖ КЭЩЦ ЧРОБ ЭБЮ_ ЧЕЖЦ ФЦЫН

Можно выдвинуть и обобщенную систему Вижинера. ЕЕ можно сформулировать не только при помощи подстановки Цезаря.

Пусть x - подмножество симметрической группы SYM(Zm ).

Определение . r-многоалфавитный ключ шифрования есть r -набор p = (p0 , p1 , ..., pr -1 ) с элементами в x .

Обобщенная система Вижинера преобразует исходный текст (x0 , x 1 ,..., x n-1 ) в шифрованный текст (y0 ,y1 ,...,yn-1 ) при помощи ключа p = (p0 , p1 , ..., pr -1 ) по правилу

VIGk : (x0 ,x1 ,...,xn-1 ) ® (y0 ,y1 ,...,yn-1 ) = (p00 ), p11 ), ..., pn-1 (xn-1 )),

где используется условие pi = pi mod r .

Следует признать, что и многоалфавитные подстановки в принципе доступны криптоаналитическому исследованию. Криптостойкость многоалфавитных систем резко убывает с уменьшением длины ключа.

Тем не менее такая система как шифр Вижинера допускает несложную аппаратную или программную реализацию и при достаточно большой длине ключа может быть использован в современных ИС.

Гам­ми­ро­ва­ние

Гам­ми­ро­ва­ние яв­ля­ет­ся так­же ши­ро­ко при­ме­няе­мым крип­то­гра­фи­че­ским пре­об­ра­зо­ва­ни­ем. На са­мом де­ле гра­ни­ца ме­ж­ду гам­ми­ро­ва­ни­ем и ис­поль­зо­ва­ни­ем бес­ко­неч­ных клю­чей и шиф­ров Ви­жи­не­ра, о ко­то­рых речь шла вы­ше, весь­ма ус­лов­ная.

Прин­цип шифрования гам­ми­ро­ва­ни­ем за­клю­ча­ет­ся в ге­не­ра­ции гам­мы шиф­ра с по­мо­щью дат­чи­ка псев­до­слу­чай­ных чи­сел и на­ло­же­нии по­лу­чен­ной гам­мы на от­кры­тые дан­ные об­ра­ти­мым об­ра­зом (на­при­мер, ис­поль­зуя сло­же­ние по мо­ду­лю 2).

Про­цесс дешифрования дан­ных сво­дит­ся к по­втор­ной ге­не­ра­ции гам­мы шиф­ра при из­вест­ном клю­че и на­ло­же­нии та­кой гам­мы на за­шиф­ро­ван­ные дан­ные.

По­лу­чен­ный за­шиф­ро­ван­ный текст яв­ля­ет­ся дос­та­точ­но труд­ным для рас­кры­тия в том слу­чае, ес­ли гам­ма шиф­ра не со­дер­жит по­вто­ряю­щих­ся би­то­вых по­сле­до­ва­тель­ностей. По су­ти де­ла гам­ма шиф­ра долж­на из­ме­нять­ся слу­чай­ным об­ра­зом для ка­ж­до­го шиф­руе­мо­го сло­ва. Фак­ти­че­ски же, ес­ли пе­ри­од гам­мы пре­вы­ша­ет дли­ну все­го за­шиф­ро­ван­но­го тек­ста и не­из­вест­на ни­ка­кая часть ис­ход­но­го тек­ста, то шифр мож­но рас­крыть толь­ко пря­мым пе­ре­бо­ром (про­бой на ключ). Криптостойкость в этом слу­чае оп­ре­де­ля­ет­ся раз­ме­ром клю­ча.

Ме­тод гам­ми­ро­ва­ния ста­но­вит­ся бес­силь­ным, ес­ли зло­умыш­лен­ни­ку ста­но­вит­ся из­вес­тен фраг­мент ис­ход­но­го тек­ста и со­от­вет­ст­вую­щая ему шиф­ро­грам­ма. Про­стым вы­чи­та­ни­ем по мо­ду­лю по­лу­ча­ет­ся от­ре­зок ПСП и по не­му вос­ста­нав­ли­ва­ет­ся вся по­сле­до­ва­тель­ность. Зло­умыш­лен­ни­ки мо­жет сде­лать это на ос­но­ве до­га­док о со­дер­жа­нии ис­ход­но­го тек­ста. Так, ес­ли боль­шин­ст­во по­сы­лае­мых со­об­ще­ний на­чи­на­ет­ся со слов “СОВ.СЕК­РЕТ­НО”, то крип­тоа­на­лиз все­го тек­ста зна­чи­тель­но об­лег­ча­ет­ся. Это сле­ду­ет учи­ты­вать при соз­да­нии ре­аль­ных сис­тем ин­фор­ма­ци­он­ной безо­пас­но­сти.

Ниже рассматриваются наиболее распространенные методы генерации гамм, которые могут быть использованы на практике.

Датчики ПСЧ

Что­бы по­лу­чить ли­ней­ные по­сле­до­ва­тель­но­сти эле­мен­тов гам­мы, дли­на ко­то­рых пре­вы­ша­ет раз­мер шиф­руе­мых дан­ных, ис­поль­зу­ют­ся дат­чи­ки ПСЧ . На ос­но­ве тео­рии групп бы­ло раз­ра­бо­та­но не­сколь­ко ти­пов та­ких дат­чи­ков.

Конгруэнтные датчики

В на­стоя­щее вре­мя наи­бо­лее дос­туп­ны­ми и эф­фек­тив­ны­ми яв­ля­ют­ся кон­гру­энт­ные ге­не­ра­то­ры ПСП. Для это­го клас­са ге­не­ра­то­ров мож­но сде­лать ма­те­ма­ти­че­ски стро­гое за­клю­че­ние о том, ка­ки­ми свой­ст­ва­ми об­ла­да­ют вы­ход­ные сиг­на­лы этих ге­не­ра­то­ров с точ­ки зре­ния пе­рио­дич­но­сти и слу­чай­но­сти.

Од­ним из хо­ро­ших кон­гру­энт­ных ге­не­ра­то­ров яв­ля­ет­ся ли­ней­ный кон­гру­энт­ный дат­чик ПСЧ. Он вы­ра­ба­ты­ва­ет по­сле­до­ва­тель­но­сти псев­до­слу­чай­ных чи­сел T(i), опи­сы­вае­мые со­от­но­ше­ни­ем

T(i+1) = (A*T(i)+C) mod m ,

где А и С - кон­стан­ты, Т(0) - ис­ход­ная ве­ли­чи­на, вы­бран­ная в ка­че­ст­ве по­ро­ж­даю­ще­го чис­ла. Оче­вид­но, что эти три ве­ли­чи­ны и об­ра­зу­ют ключ.

Та­кой дат­чик ПСЧ ге­не­ри­ру­ет псев­до­слу­чай­ные чис­ла с оп­ре­де­лен­ным пе­рио­дом по­вто­ре­ния, за­ви­ся­щим от вы­бран­ных зна­че­ний А и С. Зна­че­ние m обыч­но ус­та­нав­ли­ва­ет­ся рав­ным 2n , где n - дли­на машинного сло­ва в би­тах. Дат­чик име­ет мак­си­маль­ный пе­ри­од М до то­го, как ге­не­ри­руе­мая по­сле­до­ва­тель­ность нач­нет по­вто­рять­ся. По при­чи­не, от­ме­чен­ной ра­нее, не­об­хо­ди­мо вы­би­рать чис­ла А и С та­кие, что­бы пе­ри­од М был мак­си­маль­ным. Как по­ка­за­но Д. Кну­том, ли­ней­ный кон­гру­энт­ный дат­чик ПСЧ име­ет мак­си­маль­ную дли­ну М то­гда и толь­ко то­гда, ко­гда С - не­чет­ное, и А mod 4 = 1.

Для шиф­ро­ва­ния дан­ных с по­мо­щью дат­чи­ка ПСЧ мо­жет быть вы­бран ключ лю­бо­го раз­ме­ра. На­при­мер, пусть ключ со­сто­ит из на­бо­ра чи­сел x (j) раз­мер­но­стью b, где j=1, 2, ..., n . То­гда соз­да­вае­мую гам­му шиф­ра G мож­но пред­ста­вить как объ­е­ди­не­ние не­пе­ре­се­каю­щих­ся мно­жеств H(j).

Датчики М-последовательностей [5]

М-последовательности также популярны, благодаря относительной легкости их реализации.

М-последовательности представляют собой линейные рекуррентные последовательности максимального периода, формируемые k -разрядными генераторами на основе регистров сдвига. На каждом такте поступивший бит сдвигает k предыдущих и к нему добавляется их сумма по модулю 2. Вытесняемый бит добавляется к гамме.

Строго это можно представить в виде следующих отношений:

r1 :=r0 r2 :=r1 ... rk-1 :=rk-2

r0 :=a0 r1 Å a1 r2 Å ... Å ak-2 rk-1

К-во Просмотров: 516
Бесплатно скачать Реферат: Баричев С. Криптография без секретов