Реферат: Базы знаний

Очевидно что очень трудно работать с длинными процедурами, состоящими из большого числа различных действий. .Использование чистых алгоритмов ограниченно очень частными случаями, большая часть которых имеет дело с обработкой числовой информации. Человек же должен уметь работать со многими другими типами информации и оказывается, что ЭВМ в отличие от простого калькулятора может помочь человеку в подобных неалгоритмиче­ских ситуациях.


7) Стратегии и эвристика. Этот тип представляет собой врожденные
или приобретенные правила поведения, которые позволяют в дан­
ной конкретной ситуации принять решение о необходимых действиях. Он использует информацию в порядке, обратном тому, в ко­тором она была получена. В качестве примера можно привести рас­суждение типа: "Я знаю, что это действие приводит к такому-то результату (информация типа 4), поэтому, если я хочу получить именно этот результат, я могу рассмотреть это действие". Человек постоянно пользуется этим типом знаний при восприятии, форми­ровании концепций, решении задач и формальных рассуждениях.

Появление экспертных систем связанно с необходимостью при­нятия в расчет именно этого фундаментального типа человеческих знаний.

8) Метазнание. Без сомнения оно присутствует на многих уровнях и
представляет собой знание того, что известно и определяет значение коэффициента доверия к этому знанию, важность элементарной информации по отношению ко всему множеству знаний. Кроме то­го, сюда же относятся вопросы организации каждого типа знаний и указаний, когда и как они могут быть использованы.

2.2. Различные представления знаний в существующих системах.

Приведем краткий список наиболее распространенных в настоящее время методов. Фундаментальное различие между ними состоит в простоте модификации знания. В таблице ниже они приведены в порядке от наиболее процедурного (наиболее застывшего, структурированного) до наиболее декларативного (наиболее открытого, свободного, неупорядоченного) Такая классификация является несколько грубой, но правильно: отражает идею.


Напомним, что конечные автоматы, программы, исчисление предикатов и системы с продукционными правилами с теоретической точки зрения эквивалентны друг другу, поскольку их в принципе можно свести к универсальной машине Тьюринга, хотя их "эксплуатационные характеристики" сильно различаются.

Такие формальные понятия, как фреймы; скрипты, семантические сети, возникли из реальных потребностей искусственного интеллекта и приносят большую помощь в понимании языка.

Фреймы предложены Минским в 1975 г. и представляют собой слож­ные структуры данных, описывающих какую-либо типичную ситуацию, на­пример ожидание в аэропорту или участие в семейном обеде. Фрейм состоит из позиций для размещения объектов, характеризующих данную ситуацию. Позиция может быть передана другому фрейму. Кроме того, он содержит информацию о выполняемых действиях, о том, как следует поступать в типичных и нетипичных случаях, о влиянии соседних фреймов.

Скрипт или схема представляет собой описание стереотипного сцена­рия действий с участием определенных объектов. Скрипты связаны с теку­щей культурой и необходимым для понимания таких предложений, как "Я вошел в ресторан, официантка принесла мне меню". Они могут вызывать


другие скрипты и обладают большими, чем фреймы, возможностями для описания динамических аспектов знания.

Семантические сети - это графы, которые часто представляют собой объединение двух предыдущих понятий и объектом описания которых явля­ются элементы окружающего мира и связи между ними. Они имеют много общего с реляционными моделями баз данных.

Изображения и графы эффективно используются для доказательства теорем. Они оказывают большую помощь в проверке отсутствия зациклива­ния этапов, в полном и эффективном хранении задачи в памяти, в организа­ции ввода новых элементов.

2.3. Способы использования знаний и доступ к ним.

Имеются четыре способа использования простой информации в форме pÉq. Примером этого может служить "каждый человек ошибается".

Самый непосредственный способ состоит в прямом использовании его смысла в формулировках типа:

"Нечто ошибается, и я могу доказать, что это нечто - человек". Второй способ, использующий метазнание и обратный ход мыслей, состоит в сле­дующем:

"Если я хочу доказать, что нечто ошибается, то возможная подцель со­стоит в том, чтобы показать, что это нечто - человек". Оба первых способа используют модус поненс, два следующих используют отрицание пред­ложения q и модус толенс:

а) "Если нечто не ошибается, оно не может быть человеком". Б) "Если я хочу доказать, что нечто не является человеком, то я могу по­пытаться показать, что оно не ошибается".

Отметим, что принцип решения и, в частности, использующий его язык
Пролог применяют единый формальный подход к описанию этих способов вывода.

С практической точки зрения использование информации зависит от параметров, которые характеризуют ее правдоподобие. Каждая система
обработки информации должна быть в состоянии ответить на такие вопросы как:

• Какая часть утверждения А является истиной?

• С какой степенью уверенности эксперт согласен с заключением?

• Какова средняя вероятность достижения цели с использованием А?

• В какой мере следует оказать предпочтение А перед другими?

Некоторые системы, основанные на продукционных правилах, исполь­зуют процессы приближенного вывода, учитывающие эти обстоятель­ства. Системы, применяющие продукционные правила, описаны выше. В следующем разделе показано возможное различие между этими сис­темами и подходом к решению тех же проблем с помощью логики пер­вого порядка, отмечены также преимущества и недостатки подобного моделирования знаний.

2.4. Преимущества и недостатки продукционных систем

Начнем с недостатков. Выделим из них три главных, с которыми связа­ны определенные ограничения, лежащие в основе используемого формализ­ма. Они относятся к концепции, формулировке и использованию правил.

К-во Просмотров: 693
Бесплатно скачать Реферат: Базы знаний