Реферат: Базы знаний

1) исключают определенные правила, не подходящие к данной ситуа­ции, и тем самым уменьшают дерево поиска;

2) осуществляют частичную классификацию других правил, частично
упорядочивая ветви дерева поиска.

Конечно же, можно и дальше увеличивать число уровней знания, строя
дополнительные этажи над уже имеющимся и увеличивая это сооружение
по мере роста интеллектуальности самой системы. При этом мы добива­емся большей общности, так как тот же интерпретатор1 получает воз­можность работать в различных областях, а также большей устойчиво­сти, так как более развитые модели не чувствительны к изменениям базы элементарных знаний.

По этой причине система CRYSALIS (Engelmore, 1979) включает три отдельных уровня правил. Она предназначена для анализа протеинов, и размеры ее пространства поиска очень важны с комбинаторной точки зрения. Классический подход в данном случае неприменим. Правила сначала группируются в подмножества (неразобщенные). Каждое под­множество предназначено для определенной обработки и используется при выполнении соответствующих условий. Соответствие между конечными классами и подмножествами правил устанавливается с помощью правил заданий, которые составляют второй уровень знаний. Эти правила опре­деляют, как следует выполнить данное задание наилучшим образом.

Наконец, третий уровень относится к мета-метаправилам, которые определяют подцели и выражают их в зависимости от правил задания.

В примере, приведенном ниже, показан порядок выполнения системой одного из правил задания, в посылках которого содержится задание ПРОВЕСТИ-МЕЖДУ-ТОЧКАМИ , а также указывается, какому пра­вилу должно быть отдано предпочтение при выполнении задания:

ЕСЛИ два гипотетических элемента протеина аи b

уже размещены с коэффициентом правдоподобия

для каждого из них не менее 0,4

И ЕСЛИ число остаточных элементов в последовательности

ab не более 5

ТО использовать правила, предназначенные для задания

ПРОВЕСТИ-МЕЖДУ-ТОЧКАМИ

Такой способ группировки правил обладает преимуществами и недос­татками. Преимущество заключается в том, что управление осуществля­ется в самом правиле, каждое правило содержит собственные соображения по применению (см. систему AM Лената (1977)). Такая же руководящая идея может быть легко обнаружена и в семействе правил. Недостаток за­ключается в том, что посылки правил могут оказаться очень громоздкими.

Однако существует и альтернативный путь решения этой проблемы, важ­ной с точки зрения эффективности и ясности систем. Он состоит в разреше­нии все более и более сложных структур посылок в правилах. Эти вопросы затрагиваются при рассмотрении внутреннего представления наборов правил.

Работа Виленски (1981) «Метапланирование» посвящена управлению планами действий, независимо от области применения. Он предложил мета-стратегии для разрешения конфликтов между планами, а также рассматрива­ет рекуррентные и конкурентные планы. Одно и то же знание представлено в декларативной форме в двух различных программах РАМ и PANDORA. Одна из них составляет планы для решения задач, другая долж­на его понять и составить планы для участвующих в действии объектов.


Заключение

Итак, системы, использующие декларативные базы данных, а также продукционные правила, отношения, прототипы, схемы и семантические сети для представления и использования содержащихся в них знаний, от­крывают действительно новый подход к программированию, который за­ключается в возможности передачи от человека к программе наиболее про­стым образом знаний неупорядоченной структуры в. произвольных облас­тях. Взаимодействие с экспертными системами происходит на декларатив­ном языке, который по сути предназначен для выражения знаний. Подоб­ный подход представляется совершенно необходимым в области искусст­венного интеллекта, и на этой основе уже созданы эффективные систе­мы.

Крайняя простота представления знаний не ставит ограничений перед программистом или специалистом, скорее наоборот, она требует от нас мыслить наиболее естественным образом. Среди многих преимуществ по­добного представления знаний, как мы рассмотрели в разд. 1 и 2, нахо­дится и обсуждаемое в современных работах одновременное решение за­дач и понимание естественного языка.

Кроме того, экспертные системы предоставляют в наше распоряжение специализированные базы знаний: система PROSPECTOR охватывает зна­ния в области геологии, MYCIN используется для обучения в медицине, а PECOS оказывает помощь в программировании.

Наконец, при изучении этих систем становится очевидным, что суще­ственной особенностью нашего интеллекта является способность управлять большим объемом элементарных составляющих информации. Поэтому од­ним из предметов исследований в области искусственного интеллекта еще долгое время будут три фундаментальные проблемы, уже встречавшиеся при рассмотрении продукционных систем. Они имеют отношение к при­митивным действиям, связанным с обработкой любой ин формации:

сформулировать — запомнить — использовать

• Сформулировать

Мы постоянно оказываемся в новых ситуациях. Приходящий к нам опыт заключается прежде всего в способности абстрагироваться от этих ситуаций и описать их с помощью общих представлений, которые могут быть элементами обычного языка. Однако во многих областях этого недостаточно, t так как обычно имеется много неточностей или делается слишком много ссылок на обстоятельства, не связанные с данной конкретной ситуацией. Каждый специалист постоянно совершенствуется в своей области и вырабатывает собственный жаргон.

В некоторых книгах часто встречаются советы описывать ситуацию и предпринимаемые действия с очень высокой степенью детализации, одна­ко в этом случае трудно достигнуть нужного эффекта обобщения. Стано­вится сложно использовать всю накопленную информацию.


Автоматический поиск концептов, полезных в примитивных ситуациях, безусловно, возможен (как это возможно и для одаренных личностей), одна­ко, с нашей точки зрения, в области искусственного интеллекта в ближай­шем будущем этого ожидать не следует.

• Запомнить

Запоминание информации технологически ограничено и связано преж­де всего с эффективностью используемой информационной системы. Если для удобства работы требуется, чтобы элементы знания вводились в про­дукционные системы независимым образом, как это делается в словарях, то храниться они должны в упорядоченном виде. Правила, сгруппиро­ванные в древовидные структуры, представляют собой сеть, узлы кото­рой являются моделями, содержащими описание правил.

Кроме того, необходимо, чтобы система умела инвертировать правила, т. е. умела определять, в каких ситуациях данное правило окажется полез­ным. Инверсия — непростая операция, связанная с обобщением, и с ее по­мощью осуществляется узнавание концептов, кратких дескрипторов всех возможных ситуаций в процессе обработки информации. Для того чтобы уменьшить издержки, связанные с инверсией, иногда допускается излиш­ний расход памяти. Ясно, что в интеллектуальных, эффективно работающих системах одна и та же информация может быть представлена в нескольких различных форматах.

К-во Просмотров: 697
Бесплатно скачать Реферат: Базы знаний