Реферат: Базы знаний
1) исключают определенные правила, не подходящие к данной ситуации, и тем самым уменьшают дерево поиска;
2) осуществляют частичную классификацию других правил, частично
упорядочивая ветви дерева поиска.
Конечно же, можно и дальше увеличивать число уровней знания, строя
дополнительные этажи над уже имеющимся и увеличивая это сооружение
по мере роста интеллектуальности самой системы. При этом мы добиваемся большей общности, так как тот же интерпретатор1 получает возможность работать в различных областях, а также большей устойчивости, так как более развитые модели не чувствительны к изменениям базы элементарных знаний.
По этой причине система CRYSALIS (Engelmore, 1979) включает три отдельных уровня правил. Она предназначена для анализа протеинов, и размеры ее пространства поиска очень важны с комбинаторной точки зрения. Классический подход в данном случае неприменим. Правила сначала группируются в подмножества (неразобщенные). Каждое подмножество предназначено для определенной обработки и используется при выполнении соответствующих условий. Соответствие между конечными классами и подмножествами правил устанавливается с помощью правил заданий, которые составляют второй уровень знаний. Эти правила определяют, как следует выполнить данное задание наилучшим образом.
Наконец, третий уровень относится к мета-метаправилам, которые определяют подцели и выражают их в зависимости от правил задания.
В примере, приведенном ниже, показан порядок выполнения системой одного из правил задания, в посылках которого содержится задание ПРОВЕСТИ-МЕЖДУ-ТОЧКАМИ , а также указывается, какому правилу должно быть отдано предпочтение при выполнении задания:
ЕСЛИ два гипотетических элемента протеина аи b
уже размещены с коэффициентом правдоподобия
для каждого из них не менее 0,4
И ЕСЛИ число остаточных элементов в последовательности
ab не более 5
ТО использовать правила, предназначенные для задания
ПРОВЕСТИ-МЕЖДУ-ТОЧКАМИ
Такой способ группировки правил обладает преимуществами и недостатками. Преимущество заключается в том, что управление осуществляется в самом правиле, каждое правило содержит собственные соображения по применению (см. систему AM Лената (1977)). Такая же руководящая идея может быть легко обнаружена и в семействе правил. Недостаток заключается в том, что посылки правил могут оказаться очень громоздкими.
Однако существует и альтернативный путь решения этой проблемы, важной с точки зрения эффективности и ясности систем. Он состоит в разрешении все более и более сложных структур посылок в правилах. Эти вопросы затрагиваются при рассмотрении внутреннего представления наборов правил.
Работа Виленски (1981) «Метапланирование» посвящена управлению планами действий, независимо от области применения. Он предложил мета-стратегии для разрешения конфликтов между планами, а также рассматривает рекуррентные и конкурентные планы. Одно и то же знание представлено в декларативной форме в двух различных программах РАМ и PANDORA. Одна из них составляет планы для решения задач, другая должна его понять и составить планы для участвующих в действии объектов.
Заключение
Итак, системы, использующие декларативные базы данных, а также продукционные правила, отношения, прототипы, схемы и семантические сети для представления и использования содержащихся в них знаний, открывают действительно новый подход к программированию, который заключается в возможности передачи от человека к программе наиболее простым образом знаний неупорядоченной структуры в. произвольных областях. Взаимодействие с экспертными системами происходит на декларативном языке, который по сути предназначен для выражения знаний. Подобный подход представляется совершенно необходимым в области искусственного интеллекта, и на этой основе уже созданы эффективные системы.
Крайняя простота представления знаний не ставит ограничений перед программистом или специалистом, скорее наоборот, она требует от нас мыслить наиболее естественным образом. Среди многих преимуществ подобного представления знаний, как мы рассмотрели в разд. 1 и 2, находится и обсуждаемое в современных работах одновременное решение задач и понимание естественного языка.
Кроме того, экспертные системы предоставляют в наше распоряжение специализированные базы знаний: система PROSPECTOR охватывает знания в области геологии, MYCIN используется для обучения в медицине, а PECOS оказывает помощь в программировании.
Наконец, при изучении этих систем становится очевидным, что существенной особенностью нашего интеллекта является способность управлять большим объемом элементарных составляющих информации. Поэтому одним из предметов исследований в области искусственного интеллекта еще долгое время будут три фундаментальные проблемы, уже встречавшиеся при рассмотрении продукционных систем. Они имеют отношение к примитивным действиям, связанным с обработкой любой ин формации:
сформулировать — запомнить — использовать
• Сформулировать
Мы постоянно оказываемся в новых ситуациях. Приходящий к нам опыт заключается прежде всего в способности абстрагироваться от этих ситуаций и описать их с помощью общих представлений, которые могут быть элементами обычного языка. Однако во многих областях этого недостаточно, t так как обычно имеется много неточностей или делается слишком много ссылок на обстоятельства, не связанные с данной конкретной ситуацией. Каждый специалист постоянно совершенствуется в своей области и вырабатывает собственный жаргон.
В некоторых книгах часто встречаются советы описывать ситуацию и предпринимаемые действия с очень высокой степенью детализации, однако в этом случае трудно достигнуть нужного эффекта обобщения. Становится сложно использовать всю накопленную информацию.
Автоматический поиск концептов, полезных в примитивных ситуациях, безусловно, возможен (как это возможно и для одаренных личностей), однако, с нашей точки зрения, в области искусственного интеллекта в ближайшем будущем этого ожидать не следует.
• Запомнить
Запоминание информации технологически ограничено и связано прежде всего с эффективностью используемой информационной системы. Если для удобства работы требуется, чтобы элементы знания вводились в продукционные системы независимым образом, как это делается в словарях, то храниться они должны в упорядоченном виде. Правила, сгруппированные в древовидные структуры, представляют собой сеть, узлы которой являются моделями, содержащими описание правил.
Кроме того, необходимо, чтобы система умела инвертировать правила, т. е. умела определять, в каких ситуациях данное правило окажется полезным. Инверсия — непростая операция, связанная с обобщением, и с ее помощью осуществляется узнавание концептов, кратких дескрипторов всех возможных ситуаций в процессе обработки информации. Для того чтобы уменьшить издержки, связанные с инверсией, иногда допускается излишний расход памяти. Ясно, что в интеллектуальных, эффективно работающих системах одна и та же информация может быть представлена в нескольких различных форматах.