Реферат: Бесконечные антагонистические игры
M(x, y) = M(x, y).
Если игра G не имеет седловой точки (e-седловой точки) в чистых стратегиях, то оптимальные стратегии можно искать среди смешанных стратегий. Однако, в качестве вероятностной меры здесь вводятся функции распределения вероятностей применения игроками чистых стратегий.
Пусть F(х) – функция распределения вероятностей применения чистых стратегий игроком 1. Если число x- чистая стратегия игрока 1, то
F(х) = P(x£ х),
где P(x£ х) означает вероятность того, что случайно выбранная чистая стратегия x не будет превосходить числа х. Аналогично рассматривается функция распределения вероятностей применения чистых стратегий h игроком 2
Q(y) = P(h£ y).
Функции F(х) и Q(y) называются смешанными стратегиями соответственно игроков 1 и 2. Если F(х) и Q(y) дифференцируемы, то существуют их производные, обозначаемые соответственно через f(x) и q(y) (функции плотности распределения).
В общем случае дифференциал функции распределения dF(х) выражает вероятность того, что стратегия x находится в промежутке
х £x£ х + dх.
Аналогично для игрока 2: dQ(y) означает вероятность того, что его стратегия h находится в интервале
y £h£ y + dy.
Тогда выигрыш игрока 1 составит
М(х, y) dF(х),
а выигрыш игрока 2 равен
М(х, y) dQ(y).
Средний выигрыш игрока 1 при условии, что игрок 2 применяет свою чистую стратегию y, получим, если проинтегрируем выигрыш по всем возможным значениям х, т.е.
E(F, y) =
Напомним, что множество Y для y является замкнутым промежутком [0; 1].
Если игрок 1 применяет свою чистую стратегию х, а игрок 2 - y, то выигрыш игрока 1 составит
М(х, y) dP(х) dQ(y).
Средний выигрыш игрока 1 при условии, что оба игрока применяют свои смешанные стратегии F(х) и Q(y), будет равен
E(F,Q) = .
По аналогии с матричными играми определяются оптимальные смешанные стратегии игроков и цена игры: в антагонистической непрерывной игре G(Х,Y,М) пара смешанных стратегий F*(х) и Q*(y) соответственно для игроков 1 и 2 образует седловую точку в смешанных стратегиях, если для любых смешанных стратегий F(х) и Q(y) справедливы соотношения
Е(F,Q*) £ Е(F*,Q*) £ Е (F*,Q).
Из левой части последнего неравенства следует, что если игрок 1 отступает от своей стратегии F*(х), то его средний выигрыш не может увеличиться, но может уменьшиться за счёт лучших действий игрока 2, поэтому F*(х) называется оптимальной смешанной стратегией игрока 1.
Из правой части последнего неравенства следует, что если игрок 2 отступит от своей смешанной стратегии Q*(y), то средний выигрыш игрока 1 может увеличиться, а не уменьшиться, за счёт более разумных действий игрока 1, поэтому Q*(y) называется оптимальной смешанной стратегией игрока 2. Средний выигрыш Е(F*,Q*), получаемый игроком 1 при применении игроками оптимальных смешанных стратегий, называется ценой игры.
По аналогии с матричными играми рассматривается нижняя цена непрерывной игры в смешанных стратегиях
V1 = E(F,Q)
и верхняя цена игры