Реферат: Быстродействующий адаптивный наблюдатель в системе компенсации неизвестного запаздывания

где

Приведем (3) к системе уравнений первого порядка. Положим

Тогда в векторной форме уравнение (3) будет иметь вид

+ (4)

или в краткой форме

,

где, , A=, Z= .

Решением (4) будет

(5)

или в краткой форме

где Ф(t)= , R(t)= - решения уравнений

(6)

. (7)

Перепишем первую строку системы (5) в виде

(8)

где

.

Здесь w(t) и - известные величины для любого t; вектор g содержит неизвестные параметры объекта, а векторы bj (j=0,l,...,N-l) являются функциями перестраиваемых параметров эталонной модели .

Набирая данные на каждом из подынтервалов Jj в моменты времени tj1,...,tjm, образуем из (8) алгебраическую систему вида

или в матричной форме

(9)

Число m выбирается так, чтобы уравнений в (9) было не меньше числа неизвестных параметров. В данном случае m больше или равно 3.

Решение алгебраической системы (9) при этом записывается в виде

К-во Просмотров: 204
Бесплатно скачать Реферат: Быстродействующий адаптивный наблюдатель в системе компенсации неизвестного запаздывания