Реферат: Частотные критерии устойчивости
Разомкнутая система – это система, в которой отсутствует обратная связь между входом и выходом, т.е. управляемая величина (выходная) не контролируется.
Замкнутая система – это система регулирования по отклонению, на вход УУ через обратную связь поступает информация о фактическом изменении выходной величины.
Критерий Найквиста предназначен для исследования только замкнутых систем. Он позволяет по виду амплитудно-фазовой частотной характеристики разомкнутой системы судить об устойчивости замкнутой системы.
АФЧХ разомкнутой системы – это кривая, которую описывает конец вектора частотной передаточной функции разомкнутой системы в комплексной плоскости.
Критерий Найквиста: Пусть l корней характеристического уравнения разомкнутой системы находятся в правой полуплоскости, а остальные п – l корней — в левой полуплоскости. Тогда, для того чтобы замкнутая система была устойчива, необходимо и достаточно, чтобы амплитудно-фазовая частотная характеристика ее разомкнутой системы с ростом от 0 до охватывала точку (—1, j0) в положительном направлении, т. е. против движения часовой стрелки, l/2 раз.
В частности, если разомкнутая система устойчива (и, следовательно, l = 0), то, для того чтобы замкнутая система была устойчива, необходимо и достаточно, чтобы амплитудно-фазовая частотная характеристика ее разомкнутой системы не охватывала точку (—1, j0).
Пример. Дана замкнутая система (рис. 2, а). Оценить устойчивость системы по критерию Найквиста.
Для этого необходимо получить частотную передаточную функцию разомкнутой системы и построить АФЧХ.
;
Частотная передаточная функция ее разомкнутой системы
W (jw) = U(w) + jV (w),
U(w) = –2/(w2 + 1),
V (w) = –2w /(w2 + 1).
Для построения АФЧХ составим таблицу:
w | 0 | w >0 | ®¥ |
U(w) V(w) |
–2 0 |
< 0 <0 |
® 0 ® 0 |
Амплитудно-фазовая частотная характеристика разомкнутой системы (рис. 3, б) охватывает точку (–1, j0) в положительном направлении 1/2раз. Необходимо составить характеристическое уравнение разомкнутой системы:
Характеристическое уравнение разомкнутой системы имеет один правый корень, т.е. l= 1. Поэтому замкнутая система по Критерию Найквиста устойчива, поскольку АФЧХ разомкнутой системы охватывает точку (-1;j0) ½ раза в положительном направлении. Алгебраические критерии и критерий Михайлова применяются для исследования устойчивости и разомкнутой и замкнутой систем.
Рис. 3. Структурная схема и амплитудно-фазовая частотная характеристика
Если характеристическое уравнение разомкнутой системы имеет u(u³ 1) нулевых корней или, что-то же, передаточная функция разомкнутой системы имеет вид
W (s) =kW0 (s)/su ,