Реферат: Дефект масс и энергия связи ядер

На щель S4 магнитным анализатором проектируется изобра­жение источника ионов. Ионный ток силой 10­­ 12 – 10 9 а регист­рируется электронным умножителем. Можно регулировать ши­рину всех щелей и перемещать их снаружи, не нарушая ваку­ума, что облегчает юстировку прибора.

Существенное отличие этого прибора от предыдущих – при­менение осциллографа и развертывание участка спектра масс, впервые примененное Смитом для синхрометра. При этом пило­образные импульсы напряжения используются -одновременно для перемещения луча в трубке осциллографа и для модуляции магнитного поля в анализаторе. Глубина модуляции подбирает­ся такой, чтобы масс-спектр развертывался у щели примерно на удвоенную ширину одной линии дублета. Это мгновенное раз­вертывание пика массы сильно облегчает фокусировку.

Как известно, если масса иона М изменилась на ΔМ , то для того чтобы траектория иона в данном электромагнитном поле осталась прежней, следует все электрические потенциалы изме­нить в ΔМ/М раз. Таким образом, для перехода от одной легкой составляющей дублета с массой М к другой составляющей, имеющей массу на Δ M большую, необходимо первоначальные разности потенциалов, приложенные к анализатору Ud , и к источ­нику ионов Ua , изменить соответственно на Δ Ud и Δ Ua так, чтобы

(2.1)

Следовательно, разность масс Δ M дублета можно измерить по разности потенциалов ΔUd , необходимой для того, чтобы сфоку­сировать вместо одной составляющей дублета другую.

Разность потенциалов подается и измеряется по схеме изоб­раженной на рис. 2.2. Все сопротивления, кроме R*, манганино­вые, эталонные, заключены в термостат. R= R' =3 371 630 ± 65 ом. ΔR может изменяться от 0 до 100000 Oм, так что отношение ΔR/R известно с точностью до 1/50000. Сопротивление ΔR по­добрано так, что при положении реле, включенном на контакт А , на щели S4 , оказывается сфокусированной одна линия дубле­та, а при положении реле на контакт В – другая линия дублета. Реле – быстродействующее, переключается после каждого цикла развертывания в осциллографе, поэтому на экране можно видеть одновременно развертки обеих линий дублета. Измене­ние потенциала ΔUd , вызванное добавочным сопротивлением ΔR , можно считать подобранным, если обе развертки совпада­ют. При этом другая аналогичная схема с синхронизированным реле должна обеспечить изменение ускоряющего напряжения Uа на ΔUa так, чтобы

(2.2)

Тогда разность масс дублета ΔM можно определить по диспер­сионной формуле

(2.3)

Частота развертки обычно довольно велика (например, 30 сек -1 ), поэтому шумы источников напряжения должны быть минимальны, но длительная устойчивость не обязательна. В этих условиях идеальным источником являются батареи.

Разрешающая сила синхрометра ограничена требованием сравнительно больших ионных токов, так как частота развертки велика. В данном приборе наибольшее значение разрешающей силы – 75000, но, как правило, оно меньше; наименьшее значе­ние – 30000. Такая разрешающая сила позволяет отделить основные ионы от ионов примесей почти во всех случаях.

При измерениях считалось, что погрешность состоит из ста­тистической погрешности и погрешности, вызванной неточно­стью калибровки сопротивлений.

Перед началом работы спектрометра и при определении раз­личных разностей масс проводили серию контрольных измере­ний. Так, через определенные промежутки времени работы при­бора измерялись контрольные дублеты O2 S и C2 H4 СО , в результате чего было установлено, что в течение нескольких месяцев никаких изменений не произошло.

Для проверки линейности шкалы одну и ту же разность масс определяли при разных массовых числах, например по дублетам СН4 – О , С2 Н4 – СО и ½ (C3 H8 – CO2 ). В результа­те этих контрольных измерений были получены значения, отлича­ющиеся друг от друга лишь в пределах погрешностей. Эта проверка была проделана для четырех разностей масс, и согласие получилось очень хорошее.

Правильность результатов измерений подтвердилась также измерением трех разностей масс триплетов. Алгебраическая сумма трех разностей масс в триплете должна быть равна нулю. Результаты таких измерений для трех триплетов при разных массовых числах, т. е. в разных частях шкалы, оказались удов­летворительными.

Последним и очень важным контрольным измерением для проверки правильности дисперсионной формулы (2.3) было измерение массы атома водорода при больших массовых чис­лах. Это измерение проделали один раз для А =87, как разность масс дублета C4 H8 O 2 С4 Н7 O2 . Результаты 1,00816±2 а. е. м. с погрешностью до 1/50000 согласуются с измеренной массой Н , равной 1,0081442±2 а. е. м., в пределах погрешности измерения сопротивления ΔR и погрешности калибровки сопротивлений для этой части шкалы.

Все эти пять серий контрольных измерений показали, что формула дисперсии пригодна для данного прибора, а результа­ты измерений достаточно надежны. Данные измерений, выпол­ненных на этом приборе, были исполь­зованы для составления таблиц.

§ 3 . Полуэмпирические формулы для вычисления масс ядер и энергий связи ядер .

п.3.1. Старые полуэмпирические формулы.

По мере развития теории строения ядра и появления различных моделей ядра возникли попытки создания формул для вычисления масс ядер и энергий связи ядер. Эти формулы основываются на существующих теоретических представлениях о строении ядра, но при этом коэффициенты в них вычисляются из найденных экспериментальных масс ядер. Такие формулы частично основанные на теории и частично выведенные из опытных данных, называют полуэмпирическими формулами .

Полуэмпирическая формула масс имеет вид:

M(Z, N)=Zm H +Nmn -EB (Z, N), (3.1.1)

где M(Z, N) – масса нуклида с Z протонами и N – нейтронами; m H – масса нуклида Н1 ; mn – масса нейтрона; EB (Z, N) – энергия связи ядра.

Эта формула, основанная на статистической и капельной моделях ядра, предложена Вейцзекером. Вейцзекер перечислил известные из опыта закономерности изменения масс:

1. Энергии связи легчайших ядер возрастают очень быстро с массовыми числами.

2. Энергии связи ЕВ всех средних и тяжёлых ядер возрастают приблизительно линейно с массовыми числами А .

3. Средние энергии связи на один нуклон ЕВ /А лёгких ядер возрастают до А ≈60.

4. Средние энергии связи на один нуклон ЕВ /А более тяжёлых ядер после А ≈60 медленно убывают.

5. Ядра с чётным числом протонов и чётным числом нейтронов имеют несколько большие энергии связи, чем ядра с нечётным числом нуклонов.

6. Энергия связи стремится к максимуму для случая, когда числа протонов и нейтронов в ядре равны.

Вейцзекер учёл эти закономерности при создании полуэмпирической формулы энергии связи. Бете и Бечер несколько упростили эту формулу:

EB (Z, N)=E0 +EI +ES +EC +EP . (3.1.2)

и её часто называют формулой Бете-Вейцзекера. Первый член Е0 – часть энергии, пропорциональная числу нуклонов; Е I – изотопический или изобарный член энергии связи, показывающий, как изменяется энергия ядер при отклонении от линии наиболее устойчивых ядер; Е S – поверхностная или свободная энергия капли нуклонной жидкости; ЕС – кулоновская энергия ядра; ЕР – парная энергия.

Первый член равен

Е0 = αА . (3.1.3)

Изотопический член Е I есть функция разности N–Z . Т.к. влияние электрического заряда протонов предусматривается членом Е С , Е I есть следствие только ядерных сил. Зарядовая независимость ядерных сил, особенно сильно ощущаемая в лёгких ядрах, приводит к тому, что ядра наиболее устойчивы при N=Z . Так как уменьшение устойчивости ядер не зависит от знака N–Z , зависимость Е I от N–Z должна быть по меньшей мере квадратичной. Статистическая теория даёт следующее выражение:

Е I = –β( N–Z )2 А –1 . (3.1.4)

Поверхностная энергия капли с коэффициентом поверхностного натяжения σ равна

Е S =4π r 2 σ. (3.1.5)

К-во Просмотров: 559
Бесплатно скачать Реферат: Дефект масс и энергия связи ядер