Реферат: Дефект масс и энергия связи ядер
Подставив в уравнения (3.1.5) и (3.1.6) радиус ядра r=r0 A1/3 , получим
(3 .1.7 )
(3.1.8)
а подставив (3.1.7) и (3.1.8) в (3.1.2), получим
. (3.1.9)
Постоянные α, β и γ подбирают такими, чтобы формула (3.1.9) лучшим образом удовлетворяла всем значениям энергий связи, вычисленным по экспериментальным данным.
Пятый член, представляющий парную энергию, зависит от четности числа нуклонов:
(3.1.10)
Ферми уточнил также постоянные по новым экспериментальным данным. Полуэмпирическая формула Бете-Вейцзекера, выражающая массу нуклида в старых единицах (16 О=16 ), получилась такой:
|
(3 .1.11 )
Для четных нуклидов π = –1; для нуклидов с нечетным А π = 0; для нечетных нуклидов π = +1.
К сожалению, эта формула весьма устарела: расхождения с действительными величинами масс может достигать даже 20 Мэв и имеет среднее значение около 10 Мэв.
В многочисленных дальнейших работах первоначально лишь уточняли коэффициенты или вводили некоторые не слишком важные дополнительные члены. Метрополис и Рейтвизнер еще раз уточнили формулу Бете–Вейцзекера:
|
(3.1.12)
Для четных нуклидов π = –1; для нуклидов с нечетным А π = 0; для нечетных нуклидов π = +1.
Вапстра предложил учитывать влияние оболочек с помощью члена такого вида:
(3.1.13)
где Ai , Zi и Wi – эмпирические постоянные, подбираемые по опытным данным для каждой оболочки.
Грин и Эдварс ввели в формулу масс следующий член, характеризующий влияние оболочек:
(3.1.14)
где α i , α j и Kij – постоянные, полученные из опыта; и – средние значения N и Z в данном интервале между заполненными оболочками.
п.3.2. Новые полуэмпирические формулы с учетом влияния оболочек
Камерон исходил из формулы Бете—Вейцзекера и сохранил два первых члена формулы (3.1.9). Член, выражающий поверхностную энергию ES (3.1.7), был изменен.
Рис. 3.2.1. Распределение плотности ядерной материи ρ по Камерону в зависимости от расстояния до центра ядра. А —средний радиус ядра; Z — половина толщины поверхностного слоя ядра.
При рассмотрении рассеяния электронов на ядрах, можно сделать вывод, что распределение плотности ядерной материи в ядре ρ n трапециеобразно (рис. 16). За средний радиус ядра т можно принять расстояние от центра до точки, где плотность убывает вдвое (см. рис. 3.2.1). В результате обработки опытов Хофштедтера. Камерон предложил такую формулу для среднего радиуса ядер:
Он считает, что поверхностная энергия ядра пропорциональна квадрату среднего радиуса r2 , и вводит поправку, предложенную Финбергом, учитывающую симметрию ядра. По Камерону, поверхностную энергию можно выразить так:
?????????, ???????????, ???? ??????? (3.1.9) ????? ??? ????????? ? ????? ? ??????????????? ?????????????? ?????????? ????. ????????? ??? ???????????? ????? ????? ???
????? ????. ??????? ???? ????? ??????????? ???????? ????, ??????????????? ?????????? ? ???????? ???????? ? ???? ? ????? ??????????? ????????? ????????. ???????? ????
Таким образом, избыток масс, по Камерону, выразится так:
М - А = 8,367А - 0,783Z + αА +β+
+ Е S + EC + Еα = П (Z, N). ( 3 .2.5)
Подставив экспериментальные значения М—А методом наименьших квадратов получили следующие наиболее надежные значения эмпирических коэффициентов (в Мэв):
α=–17,0354; β=– 31,4506; γ=25,8357; φ=44,2355. (3.2.5а)
С помощью этих коэффициентов были вычислены массы. Расхождения между вычисленными и экспериментальными массами показаны на рис. 3.2.2. Как можно заметить, в некоторых случаях расхождения достигают 8 Мэв. Особенно велики они у нукли-дов с замкнутыми оболочками.
Камерон ввел дополнительные слагаемые: член, учитывающий влияние ядерных оболочек S(Z, N), и член P(Z, N) , характеризующий парную энергию и учитывающий изменение массы в зависимости от четности N и Z :
М—А=П( Z , N)+S(Z, N)+P(Z, N). (3.2.6)