Реферат: Дефект масс и энергия связи ядер

Рис. 3.2.2. Разности между значениями масс, вычисленными по основной формуле Камерона (3.2.5), и эксперименталь­ными значениями тех же масс в зависимости от массового числа А .

При этом, т.к. теория не может предложить вида членов, который отражал бы некоторые скачкообразные изменения масс, он объединил их в одно выражение

T(Z, N)=S(Z, N)+P(Z. N). (3.2.7)

Далее была выдвинута гипотеза о том, что воздействие чет­ности и оболочек зависит в отдельности от числа протонов Z и от числа нейтронов N , т.е.

T(Z, N)=T(Z) +T(N). (3.2.8)

Это разумное предложение, так как опытные данные подтверж­дают, что протонные оболочки заполняются независимо от ней­тронных и парные энергии для протонов и нейтронов в первом приближении можно считать независимыми.

На основании таблиц масс Вапстра и Хьюзенга Ка­мерон составил таблицы поправок T(Z ) и T(N) на четность и заполнение оболочек.

Г. Ф. Драницына, использовав новые измерения масс Бано, Р. А. Демирханова и много­численные новые измерения β- и α-распадов, уточнила значения поправок T(Z) и T(N) в области редких земель от Ва до Pb. Она составила новые таблицы избытков масс (М—А), вычис­ленных по исправленной формуле Камерона в этой области. В таблицах приведены также вычисленные заново энергии β-распадов нуклидов в той же области (56≤Z ≤82).

Старые полуэмпирические формулы, охватывающие весь диапазон А , оказываются слишком неточными и дают очень большие расхождения с измеренными массами (порядка 10 Мэв). Создание Камероном таблиц с более чем 300 поправ­ками уменьшило расхождение до 1 Мэв, но расхождения все же в сотни раз превышают погрешности измерений масс и их разностей. Тогда появилась идея разбить всю область нуклидов на подобласти и для каждой из них создать полуэм­пирические формулы ограниченного применения. Такой путь и избрал Леви, который вместо одной формулы с универсаль­ными коэффициентами, пригодными для всех А и Z , пред­ложил формулу для отдельных участков последовательности нуклидов.

Наличие параболической зависимости от Z энергии связи нуклидов изобар требует, чтобы в формуле содержались члены до второй степени включительно. Поэтому Леви предложил такую функцию:

М(А, Z)=α0 + α1 А+ α2 Z+ α3 АZ+ α4 Z2 + α5 А2 +δ; (3.2.9)

где α0 , α1 , α2 , α3 , α4 , α5 – численные коэффициенты, найденные по опытным данным для некоторых интервалов, а δ — член, учитывающий спаривание нуклонов и зависящий от четности N и Z .

Все массы нуклидов разбили на девять подобластей, огра­ниченных ядерными оболочками и подоболочками, и значения всех коэффициентов формулы (3.2.9) вычислили по экспери­ментальным данным для каждой из этих подобластей. Значения найденных коэффициентов та и члена δ , определяемого чет­ностью, приведены в табл. 3.2.1 и 3.2.2. Как видно из таблиц, были учтены не только оболочки из 28, 50, 82 и 126 протонов или ней­тронов, но и подоболочки из 40, 64 и 140 протонов или нейтро­нов.

Таблица 3.2.1

Коэффициенты α в формуле Леви (3.2.9), ма. е. м (16 О =16)

Z

N

α0

α1

α2

α3

α4

α5

29–40

29–40

29–40

41–50

51–64

51–64

65–82

>82

>82

29–40

41–50

51–82

51–82

51–82

83–126

83–126

127–140

>140

–155,91

–150,06

+96,27

–135,41

–133,60

–672,82

–83,72

–1746,56

571,90

13,202

7,359

3,780

5,342

6,399

13,059

3,843

18,067

–1,407

–21,956

–10,094

–17,406

–9,712

–13,465

–14,140

–10,680

–10,846

–12,238

–0,9707

–0,7023

–0,5349

–0,5570

–0,4287

–0,4461

–0,4644

–0,4364

–0,3971

1,4544

0,9473

0,8150

0,7432

0,6417

0,6492

0,6464

0,6133

0,5706

0,11565

0,10340

0,10050

0,09758

0,06583

0,05370

0,08739

0,05171

0,08613

Таблица 3.2.2

Член δ в формуле Леви (3.2.9), определенный четностью, ма. е. м. ( 16 О =16)

Z

N

δ при

четном Z и четном N

нечетном Z и нечетном N

нечетном Z и четном N

четном Z и нечетном N

29—40

29—40

29—40

41—50

51—64

51—64

65—82

82

29—40

41—50

51—82

51—82

51—82

83—126

83—126

127—140

0

0

0

0

0

0

0

0

2,65

3,08

2,02

3,08

2,52

2,09

1,61

1,66

1,44

1,84

1,27

1,54

1,12

0,96

0,84

1,01

2,20

1,82

0,75

1,44

1,13

0,73

0,76

0,88

По формуле Леви с этими коэффициентами (см. табл. 3.2.1 и 3.2.2) Риддель вычислил на электронно-счетной машине таблицу масс примерно для 4000 нуклидов. Сравнение 340 экспери­ментальных значений масс с вычисленными по формуле (3.2.9) показало хорошее согласие: в 75% случаев расхождение не пре­вышает ±0,5 ма. е. м., в 86% случаев—не больше ± 1,0мa.e.м. и в 95% случаев оно не выходит за пределы ±1,5 ма. е. м. Для энергии β-распадов согласие еще лучше. При этом количе­ство коэффициентов и постоянных членов у Леви всего 81, а у Камерона их более 300.

Поправочные члены T(Z) и T(N ) в формуле Леви заменены на отдельных участках между оболочками квадратичной функ­цией от Z или N . В этом нет ничего удивительного, так как между оболочками функции T(Z) и T(N) являются плавными функциями Z и N и не имеют особенностей, не позволяющих представить их на этих участках многочленами второй степени.

Зелдес рассматривает теорию ядерных оболочек и при­меняет новое квантовое число s—так называемое старшин­ство (seniority), введенное Рака. Квантовое число “стар­шинство " не является точным квантовым числом; оно совпадает с числом неспаренных нуклонов в ядре или, иначе, равно числу всех нуклонов в ядре за вычетом числа спаренных нуклонов с нулевым моментом. В основном состоянии во всех четных ядрах s=0; в ядрах с нечетным A s=1 и в нечетных ядрах s= 2 . Используя квантовое число “старшинство и предельно ко­роткодействующие дельта-силы, Зелдес показал, что формула типа (3.2.9) соответствует теоретическим ожиданиям. Все коэф­фициенты формулы Леви были выражены Зелдесом через различные теоретические параметры ядра. Таким образом, хотя формула Леви появилась как чисто эмпирическая, результаты исследований Зелдеса показали, что ее вполне можно считать полуэмпирической, как и все предыдущие.

Формула Леви, по-видимому, лучшая из существующих, однако она имеет один существенный недостаток: она плохо применима на границе областей действия коэффициентов. Имен­но около Z и N , равных 28, 40, 50, 64, 82, 126 и 140, формула Леви дает самые большие расхождения, в особенности если по ней рассчитывать энергии β-распадов. Кроме того, коэффициен­ты формулы Леви вычислены без учета новейших значений масс и, по-видимому, должны быть уточнены. По мнению Б. С. Джелепова и Г. Ф. Драницыной, при этом вычислении следует уменьшить число подобластей с разными наборами коэффи­циентов α и δ , отбросив подоболочки Z =64 и N =140.

Формула Камерона содержит много постоянных. Этим же недостатком страдает и формула Бекеров. В первом варианте формулы Бекеры, исходя из того, что ядерные силы короткодействующие и обладают свойством насыщения, предположили, что ядро следует разделить на внешние нуклоны и внутреннюю часть, содержащую заполненные оболочки. Они приняли, что внешние нуклоны не взаимодействуют друг с дру­гом, не считая энергии, выделяющейся при образовании пар. Из этой простой модели следует, что нуклоны одинаковой чет­ности имеют энергию связи, вызванную связью с сердцевиной, зависящую только от избытка нейтронов I=N –Z . Таким обра­зом, для энергии связи предложен первый вариант формулы

Е B = b '( I) А + а' ( I) + P ' (A, I)[(-1)N +(-1)Z ]+S'(A, I)+R'(A, I) , (3. 2.1 0 )

где Р' член, учитывающий эффект спаривания, зависящий от четности N и Z ; S' поправка на эффект оболочек; R' малый остаток.

В этой формуле существенно предположение, что энергия связи на о

К-во Просмотров: 560
Бесплатно скачать Реферат: Дефект масс и энергия связи ядер