Реферат: Действие света

а) Обычный источник света, выходящий из разных точек не интерферирует.

б) Обычный источник, но точечная диафрагма.

в) Монохроматический источник

3. Электрооптические эффекты

Электрооптический эффект – это изменение коэффициента преломления некоторых материалов под действием электрического поля. Материалы, обладающие таким свойством, называют электрооптическими материалами. Электрооптические эффекты бывают двух видов: 1) коэффициент преломления линейно зависит от силы поля, приложенного к кристаллу, не имеющему внутренней симметрии (напр., пьезокристаллу); 2) коэффициент пропорционален квадрату силы поля в веществах с внутренней симметрией. Первый называют эффектом Поккельса, а второй – эффектом Керра. Эффект Поккельса проявляется на кристаллах KDP(KH2 PO4 ), DKDP(KD2 PO4 ), ODP(NH4 H2 PO4 ), LiNbO3 и подобных им, эффект Керра можно наблюдать в нитроглицерине, сероуглероде и подобных им жидкостях.

Зависимость интенсивности излучения от напряжения, приложенного кристаллу, нелинейна, но можно придать ей линейность, поместив между кристаллом и анализатором четвертьволновую пластинку.

Электрооптический эффект применяют не только для описанной выше модуляции света, но и для изготовления быстродействующих оптических затворов (время срабатывания порядка наносекунд), известных как затворы Керра, для изготовления оптических отклоняющих систем, в оптической памяти, в трехмерных модуляторах, в оптических бистабильных элементах.

4. Акустооптический эффект

Акустооптический эффект - это явления дифракции, преломления, отражения или рассеяния света на периодических неоднородностях среды (зонах с разным показателем преломления), вызванных упругими деформациями при прохождении ультразвука. Периодическое чередование неоднородностей среды «работает» как дифракционная решетка, изменяющая направление светового луча. Акустооптические эффекты бывают двух видов (рис. 16). При низкой частоте ультразвука и малой ширине фронта (длине взаимодействия) ультразвуковой волны возникает дифракция Рамана - Ната. А если частота ультразвука высока и длина взаимодействия велика, то происходит дифракция Брэгга.

На рис. 17 показан пример размещения акустооптйческого прибора внутри оптической интегральной схемы. Здесь по­верхностной ультразвуковой волной модулируется свет в оптическом волноводе.

5. Магнитооптический эффект

Магнитооптический эффект - это изменение оптических свойств вещества в зависимости от его намагниченности или от силы приложенного к нему магнитного поля. Под оптическими свойствами следует понимать отражение, пропускание, поляризацию света и другие явления. Среди магнитооптических эффектов с изменением отражения или пропускания света различают эффект Фарадея и эффект Керра. Вещества, в которых наблюдается магнитооптический эффект, называют магнитооптическими материалами. Среди них ферримагнетики, имеющие в структуре магнитные атомы, - Y3Fe5O12(YIG), CdFe3O12, а также ортоферриты, образующие цилиндрические магнитные домены, - MnBi, EuO, CdTbFe.

В магнитооптических материалах, помещенных в магнитное поле, возникает циклотронное левостороннее (если смотреть по направлению вектора поля) вращение электронов в плоскости, перпендикулярной вектору поля.

Из магнитооптического вещества может возникнуть разность фаз между составляющими, что приводит к повороту плоскости поляризации. Угол поворотапропорционален напряженности магнитного поля Н и пути l, пройденному светом в веществе. Зависимость имеет вид= VHlКоэффициент пропорциональности Vназывают постоянной Верде. В приборах на основе магнитооптического эффекта используют материалы с высокими значениями постоянной Верде. На рис. 18 показано прохождение света через прозрачный магнитооптический материал. Если поляризатор на входе и анализатор на выходе показанного прибора расположены взаимно перпендикулярно, то проходящий свет можно модулировать, изменяя угол Фарадея, зависящий от напряженности магнитного поля. Однако так как быстрое изменение магнитного поля затруднено, то для модуляции света больше подходит электрооптический и акустооптический эффект.

Магнитооптический эффект Керра с успехом при­меняют для считывания информации из памяти на оптических дисках, позволяющих перезапись, и памяти на цилиндрических магнитных доменах, имеющей высокую плотность (рис. 19).

6. Нелинейный оптический эффект

Когда свет (электромагнитные волны) входит в какое-либо вещество, электроны атомов и молекул вещества сдвигаются полем волн, образуя дипо-ли, колеблющиеся в такт колебаниям этого поля. В свою очередь, колебания диполей создают электромагнитные колебания с такой же частотой, длиной волны и скоростью распространения, как и у возбуждающего излучения. Коэффициентом пропорциональности между поляризуемостью вещества и напряженностью электрического поля служит показатель преломления, зависящий от вещества. Но появились лазеры - источники когерентного излучения с высокой интенсивностью, т. е. с большой амплитудой колебаний, а в результате - нелинейные отклики на облучение, искажающие линейные зависимости в наблюдаемых явлениях. Такие случаи назвали нелинейными оптическими эффектами. Помимо поляризации вещества, пропорциональной силе приложенного поля, возникла нелинейная поляризация второго порядка пропорциональная квадрату силы поля и вызывающая такие явления, как удвоение частоты излучения, сложение частот двух излучений, параметрическое излучение и др. Кроме поляризации второго порядка может возникнуть нелинейная поляризация третьего порядка, вызывающая утроение частоты, искажение коэффициента преломления, вынужденное рамановское рассеяние и другие явления.

Генерация второй гармоники - получение излучения с удвоенной частотой (рис. 20,а) при облучении нелинейного оптического кристалла лазером. Например, для практических нужд излучение неодимового лазе-ра в ближней инфркрасной области (1,06 мкм) преоб-разуют в видимое излучение (0,53 мкм).

В кристалле, не имеющем зеркальной симметрии, поляризация зависит от знака вектора поля. Если к кристаллу приложить синусоидальное поле (свет), то возникнет частично нелинейная поляризация. В результате этого в излучении диполей помимо основной частоты наблюдаются колебания с удвоенной частотой. Это и есть гармоники второго порядка. Для получения хорошего коэффициента удвоения необходимо согласование фаз и совпадение фазовых скоростей в излучении основной частоты и высших гармоник, чего можно добиться, используя кристаллы с двойным лучепреломлением. Аналогичным способом осуществляют, генерацию третьей гармоники.

Если нелинейный оптический кристалл поместить в оптический резонатор и производить накачку лазер­ным излучением с частотой со, то на выходе резонатора будет излучение с двумя частотами, удовлетво-

ряющими соотношению Это явление

параметрического излучения (рис. 20,б). Оптическое смешение - это явление с эффектом, обратным пре­дыдущему. Здесь при облучении с двумя частотами на выходе из кристалла получится излучение с частотой (рис. 20, б). Это происходит

благодаря многофотонному поглощению, когда вместо нескольких поглощенных квантов испускается один с более высокой энергией. Показатель преломления вещества обычно не зависит от амплитуды световых волн, но большие амплитуды вызывают его изменение (рис. 20, г). В результате световой луч в веществе начинает «сходиться». Это явление нелинейной оптики называют автофокусировкой.

7. Эффект Рамана

Эффектом Рамана (рис. 21) называют рассеяние монохроматического излучения в веществе, При котором в спектре рассеянного света появляются новые, характерные для данного вещества линии, отличающиеся от спектральной линии источника. Это явление впервые в 1928 г. обнаружил индийский физик Раман. Если направлять на вещество сильный когерентный свет, например свет лазера, то наблюдается сильное рамановское рассеяние с выраженной направленностью. Это явление, названное вынужденным рамановским рассеянием, впервые обнаружил Вудбьюри (Woodbury) в 1962 г. Явление, открытое Раманом, в отличие от вынужденного рамановского рассеяния стали называть естественным римановским рассеянием.

.

Эффект Рамана отражает обмен энергией между светом и веществом. Фотон с энергиейлибо отдает часть энергиивеществу, либо на столько же повы­шает свою энергию за счет вещества. Энергия рас­сеянных фотонов становится равной либо . Первый случай называют стоксовым, а второй - антистоксовым излучением. Обычно интенсивность стоксового излучения выше, чем антистоксового. Энергия света в твердом теле изменяется вследствие взаимодействия кванта с фононом или плазмоном (рис. 22). При прохождении света через газ или жидкость рамановское рассеяние есть результат взаимодействия квантов с колеблющимися молекулами.

Эффект Рамана - сложное явление, зависящее от различных причин, стал эффективным методом полу­чения различной информации о веществе. В послед­нее время его используют для оценки структуры полупроводников. Например, наблюдая рамановское рассеяние в кристалле GaAs, имеющем структуру цинковой обманки, в соответствии с правилами отбо­ра видим, что спектры рассеяния от плоскости (100) и от других плоскостей имеют различную поляризацию из-за взаимодействия света с LO-фононами.

К-во Просмотров: 335
Бесплатно скачать Реферат: Действие света