Реферат: Дифференциальные уравнения с запаздывающим аргументом
Обозначим
и будем искать решение в виде
Где
Определим оператор
,
Который действует из в себя, действительно, возьмем произвольный элемент
a) Проверим, удовлетворяет ли образ условию Липшица: возьмем
При
b)
При выполнено .
c) при по определению оператора.
Выполнение условий a,b,c означает что .
Для этого необходимо подобрать параметры так, чтоб одновременно выполнялись условия:
(3)
(4)
Покажем, что оператор Т осуществляет непрерывное отображение:
Возьмем последовательность такую что
Оценка выполнена на всем интервале, величина положительна и конечна, отсюда следует, что при |
также стремится к нулю, а значит оператор Т переводит сходящиеся последовательности в сходящиеся, а значит он непрерывен.
Компактность оператора будем доказывать по теореме Арцела, так как образ оператора лежит в пространстве с соответствующей нормой.
1),
правая часть не зависит ни от t , ни от y , значит образ оператора – равномерно ограниченное семейство функций.
2)
Выбирая получаем что образ оператора есть равностепенно непрерывное семейство функций.