Реферат: Диофантовые уравнения

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

1-2y=3k,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

1-k=2t, k=1-2t,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6x²+5y²=74.

6x²-24=50-5y², или 6(x²-4)=5(10-y²), откуда x²-4=5u,т.е. 4+5u≥0, откуда u≥-4/5.

Аналогично:

10-y²=6u, т.е. 10-6u≥0, u≤5/3.

Целое число u удовлетворяет неравенству

-4/5≤u≤5/3, значит. u=0 и u=1.

При u=0, получим 10=y², где y-не целое, что неверно. Пусть u=1, тогда x²=9, y²=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение x³+y³-3xy=2.

Решение.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2mи y=2n, то 8m³+8n³-12mn=2, т.е. 2(2m³+2n³-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2x²+5y²=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2x²-20z²-20z-5=7, или x²-10z²-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2u²-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение x²+y²=а³ разрешимо в целых числах.

Доказательство.

Положим x+y=а², x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(x²+10=y³.

Решение.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

x³<(x+1)(x²+1)<(x+1)(x+1)²=(x+1) ³, то (x+1)(x²+1)≠y³

К-во Просмотров: 338
Бесплатно скачать Реферат: Диофантовые уравнения