Реферат: Дисконтирование
S = Р + I = Р (1+ni) (3)
Это - формула простых процентов. Множитель - множитель наращения проема процентов.
Переменные ставки
Если предусмотрены изменяющиеся во времени процентные ставки, то наращенная сумма будет определяться следующим образом:
S = Р ( 1 +n1 i2 + n2 i2 + ... +nm im ) (4)
Где ik – процентная ставка в период k,
nk – продолжительность периода к.
В ряде практических приложений финансового анализа встает вопрос об определении первоначальной суммы долга по накопленной сунне, в зависимости от используемой ставки он решается путей использования математического дисконтирования или банковского учета.
Математическое дисконтирование
Математическое дисконтирование является точным формальным решением обратной задачи.
Р = S/(1+ni) (5)
Множитель:
1
1 + ni
называют дисконтным множителем .
Задача 1
Определить сумму, вложенную в коротко-срочные облигации доходностью 5% годовых на 7 месяцев, которые принесли дивиденды на 19000 рублей.
Решение
i = 0,05/12 = 0,0041 или 0,42 %
по формуле (5):
P= 19000/(1+7*0,0041) = 18464,5 рубля
Сложные проценты
Идея сложных процентов очень проста. В них, в отличие от простых процентов, существует период времени, по истечении которого проценты начисляются не только на имеющуюся в начале этого периода сумму, но и на накопившиеся к его концу проценты. Конечно, интервал этот может быть разным по длине, например, месяц или год. Но если уж он выбран, то является циклическим, т.е. на некотором промежутке ось времени разбивается этими периодами, а равные части, как линейка на сантиметры. В то же время так же, как и простые проценты, сложные не могут не существовать !
Но если без простых процентов нельзя обойтись из-за соображений удобства в обращении или, скажем, ощущения справедливости линейной зависимости вознаграждения от суммы кредита и времени, то в случае сложных процентов основную роль играет наличие свободной конкуренции.
Формула наращения сложных процентов
S = P(1 + i)n (6)
Р - первоначальная сумма долга;
S - наращенная сумма, или сумма в конце срока;