Реферат: Двухзеркальная антенна по схеме Кассергена
введение
Зеркальные антенны являются наиболее распространёнными остронаправленными антеннами. Их широкое применение в самых разнообразных радиосистемах объясняется простотой конструкции, возможностью получения разнообразных видов Д.Н., высоким КПД, малой шумовой температурой, хорошими диапазонными свойствами и т.д. В радиолокационных применениях зеркальные антенны позволяют легко получить равносигнальную зону, допускают одновременное формирование нескольких Д.Н. общим зеркалом (в том числе суммарных и разностных). Некоторые типы зеркальных антенн могут обеспечивать достаточно быстрое качание луча в значительном угловом секторе. Зеркальные антенны являются наиболее распространённым типом антенн в космической связи и радиоастрономии, и именно с помощью зеркальных антенн удаётся создавать гигантские антенные сооружения с эффективной поверхностью раскрыва, измеряемой тысячами квадратных метров.
Двухзеркальня антенна по схеме Кассегрена представляет собой систему состоящую из двух отражающих поверхностей – софокусных параболоида и гиперболоида – и облучателя, установленного во втором фокусе гиперболоида. Все расстояния по ломанной линии от фокуса до раскрыва одинаковы, что обеспечивает синфазность поля в раскрыве. Двухзеркальная антенна является более компактной, чем однозеркальная, и обеспечивает более равномерное распределение возбуждения по раскрыву, а также является более помехозащищённой, даёт возможность укоротить тракт СВЧ, и разместить основную часть конструкции облучателя за зеркалом, что особенно удобно в моноимпульсных радиолокаторах. При оптимизации размеров облучателя и малого зеркала удаётся получить КИП (0,60¸0,65). Недостаток системы – затенение раскрыва малым её зеркалом, а также обратная реакция малого зеркала на облучатель.
Принцип работы двухзеркальной антенны по схеме Кассегрена состоит в том, что электромагнитное поле от облучателя, отражаясь от второго зеркала (гиперболоида) попадает на поверхность первого зеркала (параболоида), аотражённое о него, наконец, излучается в пространство причём вид излучаемого в простанство поля совпадает с полем излучаемым плоской синфазной поверхностью.
1. исходные данные и задание на проектирование
Выбрать и расчитать:
-Параметры облучателя;
-Основные геометрические размеры зеркал;
-Распределение поля в раскрыве;
-Диаграммы направленности в вертикальной и горизонтальной плоскостях;
-Линию передачи;
-Коэффициент усиления и эффективность антенны;
-Профили сечения зеркал.
Вычертить:
-Конструкцию облучателя;
-Общий вид антенны;
-Профили сечения зеркал.
Расчётный вариант №42.
В данном варианте при расчётах необходимо учесть и придерживаться следующих исходных данных:
-Частота F, ГГц.11
-Ширина диаграммы направленности D q по уровню –3дБ (град.)1,5
-Уровень боковых лепестков d в дБ . - 23
-Мощность передатчика в импульсе PИ , кВт .80
-Коэффициент усиления ‑‑
-Тип облучателя: диэлектрическая антенна.
2. Расчёт основных конструктивных элементов антенны и линии передачи
2.1. расчёт размера рефлекторов, фокусных расстояний, угловых размеров.
Перед началом расчётов основных конструктивных параметров зеркал двух зеркальной антенны по схеме Кассегрена рассмотрим рисунок 2.1. , на котором показаны основные параметры зеркал.
Рис. 2.1. Эквивалентный параболоид.
На рисунке 2.1. : e – эксцентриситет гиперболического зеркала; y 0 – угол раскрыва большого зеркала (или параболоида); j 0 – угол зрения на малое зеркало (или угол раскрыва эквивалентного параболоида); f – фокусное расстояние большого зеркала (или параболоида); f Э – фокусное расстояние эквивалентного параболоида; r j ‑ расстояние до второго фокуса гиперболоида; r y ‑ расстояние до первого фокуса гиперболоида; D – диаметр раскрыва большого зеркала (или параболоида); d – диаметр раскрыва малого зеркала (или гиперболоида).
Эксцентриситет гиперболического зеркала определяется соотношением: