Реферат: Ефект Ганна
Рабоча частота у пролітному режимі обернено пропорційнадовжиніаботовщині високоомній частині кристалу (f =v /l ). Зв’язок між генерируючоюпотужністю та частотою можно записатиувигляді:
Потужність генерируючих НВЧ-коливань залежить від повного опору Z або від площі робочої частини високоомного шару напівпровідника. Наведене співвідношення вказує на те, що зміна потужності із частотою пропорційна 1/f 2 . Верхня межа робочої частоти діодів Ганна становить приблизно 150 ГГц . Генератори Ганна з арсеніду галію можуть генерувати НВЧ-коливання від 1 до 50 ГГц . Трохи більші частоти отримані на генераторах Ганна з фосфіду індію у зв'язку із більшими значеннями максимальних швидкостей електронів, але якість приладів із цього матеріалу значно нижча через недостатнє відпрацьовування технології виготовлення матеріалу.
| ||||||||||||||
| ||||||||||||||
| ||||||||||||||
|
| |||||||||||||
| ||||||||||||||
| ||||||||||||||
| ||||||||||||||
| ||||||||||||||
|
в)
Рис. 4.4
Приклади характеристик діодів Ганна
а) типічна залежність, генеруючої діодом Ганна потужності, від прикладеної напруги;
б) типічна залежність, генеруючої діодом Ганна потужності, від прикладеної напруги та температури;
в) частота та щільність , генеруючої діодом Ганна потужності, від ступеню легування для випадку GaN.
Перевага фосфіду індію перед арсенідом галію є більше значення граничної напруженості електричного поля (10,5 і 3,2 кВ /см відповідно). Це повинне дозволити створити генератор Ганна з більшою вихідною потужністю. Для створення більших частот генерируючих коливань становлять інтерес потрійні сполуки GaInSb , тому що в них великі дрейфові швидкості електронів.
У зв'язку з можливою наявністю у кристалі генератора Ганна декількох неоднорідностей зародження домену може відбуватися у різні моменти часу на різній відстані від анода. Тому частота коливань буде змінюватися, тобто можуть виникати частотні шуми. Крім частотних шумів у генераторах Ганна існують амплітудні шуми, основною причиною яких є флуктуації у швидкостях руху електронів. Звичайно амплітудні шуми в генераторах Ганна малі, тому що дрейфова швидкість у сильних електричних полях, що існують у цих приладах, насичена й слабко змінюється при зміні електричного поля.
Важливим для практичного застосування генераторів Ганна є питання про можливості їхньої частотної перебудови у досить широкому діапазоні. Із принципу дії генератора Ганна ясно, що частота його повинна слабко залежати від прикладеної напруги. Зі збільшенням прикладеної напруги трохи зростає товщина домену, а швидкість його руху змінюється незначно. У результаті при зміні напруги від граничного до пробивного частота коливань збільшується всього на десяті частки відсотка.
Термін служби генераторів Ганна відносно малий, що пов'язане з одночасним впливом на кристал напівпровідника таких факторів, як сильне електричне поле й перегрів кристала через потужності, що виділяється в ньому.
В 1966 р. був створений промисловий зразок генератора НВЧ-коливань з робочою частотою порядку 2 – 3 ГГц і вихідною потужністю 100 Вт в імпульсному режимі. На виставці вимірювальних приладів електронної техніки й автоматики, що відбулася в США в 1968 р., були продемонстровані радіолокаційні станції з генератором Ганна, призначені для визначення швидкості тіл, що рухаються. Ці станції були настільки малі, що їх можна було тримати у руках.
5. Висновок
У даній роботі були розглянуті, як теоретична і так практична сторони ефекту Ганна. З’ясовані причини виникнення участку негативного опору на вольт-амперній характеристиці у діодах Ганна. Детально розглянуто процес виникнення, рух і зникнення електричного домену, його характеристики. Розглянуто рух електронів, з одного мінімуму до іншого, при різних значеннях прикладенного поля, - при менших та більших за критичне. З’ясовані основні характеристики і особливості діодів Ганна.
6. Список використаної літератури
1. Епифанов Г.И., МомаЮ. О., Твердотельная электроника. – М.: Высшая школа, 1986. – 304 с.
2. Шалимова К. В., Физика твердого тела. – М.: Энергия, 1976. – 416 с.
3. Жеребцов И. П., Основы электроники. – Л.: Энергоатомиздат, 1990. – 352 с.
4. Гуртов В. А., Артамонов А. Н., Ветров А. С.– Твердотельная электроника. – П.: Издательстельство ПетрГУ, 2000.– 254 с.