Реферат: Экономическая кибернетика
Элементы матрицы – это ожидание резуль. Деятельности в завис от сост природы.
1) Подход махмах “ оптимистический” : В каж точке мы находим макс элемент и после этого находим макс из полученных чисел. gi =maxj aij Þg=maxi gi =gi0 Þ выб Аi0 .
Выбираем макс значение. Чел ориентир на самый лучший возмож результат, не обращ внимание на возмож неудачи.
2) Критерий Вальда – критерий пессимизма : Находим в каж строчке миним элемент и выбираем ту стратегию, которая дает макс гарантируемый доход.
ai =minj aij Þa=maxi ai =ai Þ выб Аi0 .
3)Критерий Гурвица ( l ) – ур пессимизма : Человек выбирает 0£l£1. Находим число a i = l a i +(1- l ) g i Þa maxi a i = a i0 Þвыб Аi0 . Если l=1 – кр Вальда (пессимизма), если l=0 – кр оптимизма. Конкретная величина l опред-ся эк-ой ситуацией.
4) Критерий Сэвиджа – кр минимального риска : Состав март риска по формуле rij = b j -аij . bij =max aij Þ rij =bj -aij .
R=(rij ) –матр риска; ri =maxj rij Þ mini ri =ri0 Þ выб Аi0 .
Если бы мы знали, то мы бы выбрали наиболее эф-е решение. Для самого эф-го решения: rij =0 (если Пj ) Þ Аi . Риск = величине упущенной возможности.
У каж критерия есть свои особенности применения. Если мы оценив ситуацию по разным критериям, то мы можем принять более обоснован решение. Трудность обоснования яв-ся, что природа не стремится к выигрышу.
Принятие решения в усл риска.
Рассотрим вариант игры чел и природы в случаи, когда нам известно сост природы. Природа к выигрышу не стремится. Находим стратегию, которая приносит макс средний доход. Средний доход расчитывается по правилу теории вероятности.
Величина среднего дохода равна матем ожиданию при этой стратегии.
1) М(Ai )=n åj=1 aij pj Находим макс maxi M(Ai )
2) Правило минималь среднего риска. R=(Ai )=n åj=1 rij pj . Находим наимень mini R(Ai ).
Лемма : Указ выше 2 критерия в результате всегда приводят к выбору одной и той же оптим стратегии.
Док-во: Найдем миним сред риска mini R(Ai )= mini åj rij pj = mini (åj (bj -аij )pj )= mini (åj bj pj -åj аij pj )={åj bj pj – не зависит от переменной i, значит это const С}= mini (С-åj аij pj )Þ минимум разности соот-ет максимуму вычитаемого.
maxi åj аij pj =M(Ai ).
Номера стратегий, на которых достиг миним среднего риска, равны номерам стратегий обеспеч наиболь средний выигрыш.
Бейссовский подход нахождения оптимального решения.
Бейсовский подход: Если первонач распредел вероятности мы получ доход `Q` . Если мы можем провести эксперемент дающий новое распред вероятности в завис от первонач `Q` и нового `Q’ , мы делаем свой выбор стратегии. p'Þ`Q’` .
Некоторые св-ва матричной игры.
Замеч№1 О масштабе игр : Пусть даны 2 игры одинаковой размерности с платежной матрицей р(1) и р(2) . При чем при любых i и j выпол (а(2) ij =aa(1) ij +b), некоторые числа a и b. Тогда: 1) опт стратегии 1 игрока в 1 и 2 игре одинаковые. Опт стратегии 2 игрока одинаковы в обеих играх.
2) Цена второй игры V2 =aV1 +b.
Для некот методов решений все элементы матр должны быть не отрицательными.
Заме№2 О доминировании стратегий : Этот прием применяется для умень размерности игры.
А : Аi доминирует над Ак (Аi >Ак ), если для любого j выпол нерав-во аij >akj и хотя бы одно из этих нерав-в строгое.
Ак – заведомо невыгодна; сред размер выигрыша меньше; р* к =0, стратегия пассивная.
В : Вj доминирует над Вt (Вj >Вt ), если для любого i выпол нерав-во аij >ait и хотя бы одно из этих нерав-в строгое.
Bt – невыгодна Þ q* t =0 – актив стратегия.
Доминир стратегии вычеркиваются и получ матр меньшей размерностью.
Замеч№3 Сравнение операций по методу Парето : Допустим есть операции Q1 , Q2 ,… Qn . Для каж опер-и расчит 2 параметра: 1) E(Q) – эффективность (доход);