Реферат: Экономический рос в модели межотраслевого баланса
Государство играет значительную роль в регулировании экономического роста и следует рассмотреть какие меры государственного регулирования наилучшем образом могут стимулировать этот процесс.
1. Кейнсианцы рассматривают экономический рост преимущественно с точки зрения факторов спроса. Обычно они объясняют низкие темпы роста неадекватным уровнем совокупных расходов, которые не обеспечивают необходимого прироста ВНП. Поэтому они проповедуют низкие ставки процента (политику “дешевых денег”) как средство стимулирования капиталовложений. При необходимости финансово-бюджетная политика может использоваться для ограничения правительственных расходов и потребления, с тем чтобы высокий уровень капиталовложений не приводил к инфляции.
2. В противоположность кейнсианцам, сторонники “экономики предложения” делают упор на факторы, повышающие производственный потенциал экономической системы. В частности, они призывают к снижению налогов как к средству, стимулирующему сбережения и капиталовложения, поощряющему трудовые усилия и предпринимательский риск. Например, снижение или отмена налога на доход от процентов приведет к увеличению отдачи от сбережений. Аналогичным образом, если облагать подоходным налогом суммы, идущие на выплаты по процентам, это приведет к ограничению потребления и стимулированию сбережений. Некоторые экономисты выступают за введение единого налога на потребление в качестве полной или частичной замены личного подоходного налога. Смысл этого предложения состоит в ограничении потребления и стимулировании сбережений. В отношении капиталовложений эти экономисты обычно предлагают уменьшить или отменить налог на прибыли корпораций, в частности предоставить значительные налоговые льготы на инвестиции. Было бы правомерно сказать, что кейнсианцы уделяют больше внимания краткосрочным целям, а именно поддержанию высокого уровня реального ВНП, воздействия на совокупные расходы. В отличие от них, сторонники “экономики предложения” отдают предпочтения долгосрочным перспективам, делая упор на факторы, обеспечивающие рост общественного продукта при полной занятости и полной загрузке производственных мощностей.
3. Экономисты разных теоретических направлений рекомендуют и другие возможные методы стимулирования экономического роста. Например, некоторые ученые пропагандируют индустриальную политику, посредством которой правительство взяло бы на себя прямую активную роль в формировании структуры промышленности для поощрения экономического роста. Правительство могло бы принять меры, ускоряющие развитие высокопроизводительных отраслей и способствующие перемещению ресурсов из низко производительных отраслей. Правительство также могло бы увеличить свои расходы на фундаментальные исследования и разработки, стимулируя технический прогресс. Рост расходов на образования также может способствовать повышению качества рабочей силы и росту производительности труда.
При всей многочисленности и сложности возможных методов стимулирования экономического роста большинство экономистов едины в том, что увеличение темпов экономического роста является весьма непростой задачей, - капиталоемкость и склонность к сбережениям нелегко поддаются мерам
ГЛАВА II. ЭКОНОМИЧЕСКИЙ РОСТ И МОДЕЛЬ МЕЖОТРАСЛЕВОГО БАЛАНСА.
Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в в сфере экономики, с использование, как правило, современной вычислительной техники.
Процесс решения экономических задач осуществляется в несколько этапов:
1. Содержательная (экономическая) постановка задачи. Вначале нужно осознать задачу, четко сформулировать ее. При этом определяются также объекты, которые относятся к решаемой задаче, а также ситуация, которую нужно реализовать в результате ее решения. Это - этап содержательной постановки задачи. Для того, чтобы задачу можно было описать количественно и использовать при ее решении вычислительную технику, нужно произвести качественный и количественный анализ объектов и ситуаций, имеющих к ней отношение. При этом сложные объекты, разбиваются на части (элементы), определяются связи этих элементов, их свойства, количественные и качественные значения свойств, количественные и логические соотношения между ними, выражаемые в виде уравнений, неравенств и т.п. Это - этап системного анализа задачи, в результате которого объект оказывается представленным в виде системы. Следующим этапом является математическая постановка задачи, в процессе которой осуществляется построение математической модели объекта и определение методов (алгоритмов) получения решения задачи. Это - этап системного синтеза (математической постановки) задачи. Следует заметить, что на этом этапе может оказаться, что ранее проведенный системный анализ привел к такому набору элементов, свойств и соотношений, для которого нет приемлемого метода решения задачи, в результате приходится возвращаться к этапу системного анализа. Как правило, решаемые в экономической практике задачи стандартизованы, системный анализ производится в расчете на известную математическую модель и алгоритм ее решения, проблема состоит лишь в выборе подходящего метода.
Следующим этапом является разработка программы решения задачи на ЭВМ. Для сложных объектов, состоящих из большого числа элементов, обладающих большим числом свойств, может потребоваться составление базы данных и средств работы с ней, методов извлечения данных, нужных для расчетов. Для стандартных задач осуществляется не разработка, а выбор подходящего пакета прикладных программ и системы управления базами данных. На заключительном этапе производится эксплуатация модели и получение результатов.
Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.
Изучение балансовых моделей, представляющих собой одно из важнейших направлений и экономико-математических исследований, должно служить объектом изучения отдельной дисциплины. Наша цель – проиллюстрировать на примере балансовых расчетов применение основных понятий экономико-математических исследований.
Пусть рассматривается экономическая система, состоящая из n взаимосвязанных отраслей производства. Продукция каждой отрасли частично идет на внешнее потребление (конечный продукт), а частично используется в качестве сырья, полуфабрикатов или других средств производства в других отраслях, в том числе и в данной. Эту часть продукции называют производственным потреблением[4] .
Обозначим через xi валовый выпускпродукции i-й отрасли за планируемый период и через yi – конечный продукт, идущий на внешнее для рассматриваемой системы потребление (средства производства других экономических систем, потребление населения, образование запасов и т.д.).
Таким образом, разность xi - yi составляет часть продукции i-й отрасли, предназначенную для внутрипроизводственного потребления. Будем в дальнейшем полагать, что баланс составляется не в натуральном, а в стоимостном разрезе.
Обозначим через xik часть продукции i-й отрасли, которая потребляет
Очевидно, эти величины связаны следующими балансовыми равенствами :
х1 - (х11 + х12 + … + х1n ) = у1
х2 - (х21 + х22 + … + х2n ) = у2 (1)
. . . . . . . . . . . . . . . . . . . . . . . . .
xn - (xn1 + xn2 + … + xnn ) = yn
Одна из задач балансовых исследований заключается в том, чтобы на базе данных об исполнение баланса за предшествующий период определить исходные данные на планируемый период.
Будем снабжать штрихом (х’ ik , y’ i и т.д.) данные, относящиеся к истекшему периоду, а теми же буквами, но без штриха – аналогичные данные, связанные с планируемым периодом. Балансовые равенства (1) должны выполняться как в истекшем, так и в планируемом периоде.
Будем называть совокупность значений y1 , y2 , … , yn , характеризующих выпуск конечного продукта, ассортиментным вектором :
у = (у1 , у2 , … , yn ) , (2)
а совокупность значений x1 , x2 , … , xn ,определяющих валовый выпуск всех отраслей – вектор-планом :
x = (x1 , x2 , … , xn ). (3)
Зависимость между двумя этими векторами определяется балансовыми равенствами (1). Однако они не дают возможности определить по заданному, например, вектор у необходимый для его обеспечения вектор-план х , т.к. кроме искомых неизвестных хk , содержат n2 неизвестных xik , которые в свою очередь зависят от xk .
Поэтому преобразуем эти равенства. Рассчитаем величины aik из соотношений :