Реферат: Экономический рост и проблемы окружающей среды
Кривые Y1 , Y2 , Y3 … Yn называются изоквантами продукта. Они охватывают все возможные комбинации факторов производства и дают определенную величину выпуска продукции. Каждая изокванта характеризует новый уровень производства, и величина выпуска продукции возрастает по мере смещения изоквант вправо: Y1 <Y2 <Y3 …<Yn . Тогда РI , РII , РIII … РIV – это технологические комбинации факторов труда и капитала, дающие одинаковое количество общественного продукта в пределах одной и той же изокванты. На нашем рисунке более трудоемкий на первой изокванте по трудоемкости РIV >РIII и т.д.
Производственные функции дают возможность оценить конкретно, во что обществу обойдется технологическая замена единицы одного фактора на определенную величину другого.
Например, в двухфакторной модели с постоянными коэффициентами эластичности выпуск национального продукта на 1/4 определяется капиталом, а на 3/4 – трудом. Если стоит задача увеличить выпуск продукта на 5 млрд. долл., то это можно сделать двумя способами:
1. Увеличив капитал, оставив без изменения затраты труда, что потребует прироста капитала в размере 20 млрд. долл. (5:1/4=20).
2. Увеличив затраты труда, оставив без изменения затраты капитала, что потребует прироста трудовых затрат в размере 6,7 млрд. долл. (5:3/4=6,7).
Таким образом, один и тот же объем прироста национального продукта может быть получен либо с расширением капиталовложений на 20 млрд. долл., либо с расширением использования труда на 6,7 млрд. долл. Следовательно, при данном уровне технологического развития общества единица труда эквивалентна и взаимозаменяема для 3 единиц капитала.
Третья важная задача – выявление доли качественного фактора научно-технического прогресса в производстве и росте национального продукта. Здесь используются модифицированные производственные функции с целью обособления специального коэффициента эластичности, характеризующего влияние НТП на экономический рост.
Пример функции такого рода:
Y=A * Lα * Kβ * ent ,
где α, β, n – коэффициенты эластичности,
t – период времени, за который рассматривается экономический рост,
e – основание натуральных логарифмов.
y= αl + βK + n – прирост продукта, дающий итог экономического роста, где:
y – среднегодовой прирост национального продукта;
l – прирост труда;
K – прирост капитала;
n – характеризует долю НТП.
Пример: известны исконные параметры:
y=3,2 % в год; l =1 %; K=3 %; α=3/4; β=1/4; n=0,017.
Тогда можно записать:
3,2 %=0,75 % + 0,75 % + 1,7 %.
Исходя и этого, можно определить долю интенсивных факторов экономического роста: 1,7:3,2=0,53=53 %; экстенсивных факторов (47 %). Это говорит о преобладании роли интенсификации в экономическом росте.[10]
Значительную роль в разработке моделей экономического роста сыграл Р. Солоу.
Модель Р. Солоу – наиболее известная простая непрерывная односекторная модель экономической динамики.
Модель Солоу представлена пятью переменными и описывается системой из пяти уравнений.
Переменные:
Y – объем национального продукта;
С – фонд непроизводственного потребления;
S – валовой фонд накопления;