Реферат: Экспертная система по породам дерева

predicates

do_expert_job

do_consulting

ask(symbol,symbol)

dog_is(symbol)

it_is(symbol)

positive(symbol,symbol)

negative(symbol,symbol)

remember(symbol,symbol,symbol)

clear_facts

Предикаты базы данных xpositive и xnegative используются для хранения утвердительных и отрицательных ответов пользователя. Первые четыре предиката нужны для взаимодействия с пользователем, а остальные шесть - для механизма вывода.

Должны быть составлены восемь продукционных правил : по одному для каждой породы. Каждое правило должно идентифицировать породу по признаку принадлежности к группе длинношерстных или короткошерстных.

Правило it_is производит эту идентификацию. Затем правило positive идентифицирует характеристики собаки в каждом случае.

И it_is и positive используются механизмом вывода. Ниже приведено полное продукционное правило для дуба:

tree_is("Дуб"):-

positive(tree,"Лиственная"),

positive(tree,"Твердая"),

positive(tree,"Серо_Коричневая"),

positive(tree,"Мелкая_текстура"),!.

Механизм вывода должен иметь правила для управления данными вводимыми пользователем, для сопоставления их с продукционными правилами и сохранения "трассы" (или запоминания) отрицательных и утвердительных ответов. Правила positive и negativeиспользуются для сопоставления данных пользователя с данными в продукционных правилах. Правило remember (запоминание) производит добавление предложений с ответами yes (да) и no (нет), для использования при сопоставлении с образцом:

positive(X,Y) :-

xpositive(X,Y),!.

positive(X,Y) :-

not(negative(X,Y)),!,

ask(X,Y).

negative(X,Y) :-

xnegative(X,Y),!.

remember(X,Y,yes) :-

asserta(xpositive(X,Y)).

К-во Просмотров: 900
Бесплатно скачать Реферат: Экспертная система по породам дерева