Реферат: Экспертные оценки в управлении
Чрезвычайно важным является требование транзитивной согласованности элементов матрицы , которое означает, что должны выполняться условия
(6.13)
Данные условия могут быть доказаны с помощью определения (6.11).
Матрица попарного сравнения объектов, элементы которой удовлетворяют условиям (6.11) – (6.13), называется согласованной. Следует отметить, что при попарном сравнении объектов эксперту не всегда удается выполнить условие транзитивной согласованности. В принципе, допускается некоторая степень несогласованности матрицы попарных сравнений.
По матрице попарного сравнения , составленной экспертом, легко могут быть оценены важности объектов
. Используя соотношение (6.11) легко показать, что в случае согласованной матрицы
справедливы соотношения
………………
Приведем простой пример. Пусть матрица попарного сравнения имеет вид
Легко убедиться в том, что данная матрица удовлетворяет условиям согласованности; расчет дает
Если матрица не является согласованной, то нахождение вектора оценок
следует вычислять как нормированный собственный вектор матрицы , соответствующий ее наибольшему собственному числу. Часто расчеты подобного рода проводятся рекуррентно. Пусть
- начальное приближение искомого вектора . Итерационный процесс описывается уравнением
(6.14)
Полагая , получим первое приближение:
где в правой части после умножения на
получается некоторый вектор
. После нормировки он представляется в виде
где - нормирующая константа,
- нормированный вектор (т.е. вектор, сумма составляющих которого равна единице).
Определив , подставим его в правую часть уравнения (3.14) и повторяем вычисления.
Как правило, итерационный процесс продолжается до тех пор, пока величины - го приближения не будут отличаться от соответствующих величин
-го приближения не более, чем на
(обычно принимают
). Скорость сходимости итерационного процесса зависит от выбора начального приближения. Часто в качестве
выбирают первый столбец матрицы
.
Пример. Для матрицы попарного сравнения
вычислим с помощью итерационной процедуры максимальное собственное число и соответствующий ему собственный вектор. В качестве начального приближения возьмем первый столбец матрицы. Получим