Реферат: Экспертные оценки в управлении

Чрезвычайно важным является требование транзитивной согласованности элементов матрицы , которое означает, что должны выполняться условия

(6.13)

Данные условия могут быть доказаны с помощью определения (6.11).

Матрица попарного сравнения объектов, элементы которой удовлетворяют условиям (6.11) – (6.13), называется согласованной. Следует отметить, что при попарном сравнении объектов эксперту не всегда удается выполнить условие транзитивной согласованности. В принципе, допускается некоторая степень несогласованности матрицы попарных сравнений.

По матрице попарного сравнения , составленной экспертом, легко могут быть оценены важности объектов . Используя соотношение (6.11) легко показать, что в случае согласованной матрицы справедливы соотношения

………………

Приведем простой пример. Пусть матрица попарного сравнения имеет вид

Легко убедиться в том, что данная матрица удовлетворяет условиям согласованности; расчет дает

Если матрица не является согласованной, то нахождение вектора оценок

следует вычислять как нормированный собственный вектор матрицы , соответствующий ее наибольшему собственному числу. Часто расчеты подобного рода проводятся рекуррентно. Пусть

- начальное приближение искомого вектора . Итерационный процесс описывается уравнением

(6.14)

Полагая , получим первое приближение:

где в правой части после умножения на получается некоторый вектор . После нормировки он представляется в виде

где - нормирующая константа, - нормированный вектор (т.е. вектор, сумма составляющих которого равна единице).

Определив , подставим его в правую часть уравнения (3.14) и повторяем вычисления.

Как правило, итерационный процесс продолжается до тех пор, пока величины - го приближения не будут отличаться от соответствующих величин -го приближения не более, чем на (обычно принимают ). Скорость сходимости итерационного процесса зависит от выбора начального приближения. Часто в качестве выбирают первый столбец матрицы .

Пример. Для матрицы попарного сравнения

вычислим с помощью итерационной процедуры максимальное собственное число и соответствующий ему собственный вектор. В качестве начального приближения возьмем первый столбец матрицы. Получим

К-во Просмотров: 355
Бесплатно скачать Реферат: Экспертные оценки в управлении