Реферат: Электрические цепи постоянного тока и методы их расчета

Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последователь-ном соединении сопротивления r0 и Rн складываются. В схеме (рис. 1.17) ток распределяется обратно пропорционально сопротивлениям r0 и Rн двух параллельных ветвей. Ток в нагрузке Rн

,

т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн , но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.

Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r0 и величиной электродвижущей силы Е.

В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.

Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).

Рис. 1.20

Для этой цепи на основании второго закона Кирхгофа можно записать

E1 + E2 + E3 = I(r01 + r02 + r03 + Rн ),

откуда

.

Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДС Eэ и внутреннее сопротивление rэ.


Рис. 1.21

Рис. 1.22

При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:

I = I1 + I2 + I3 ; P = P1 + P2 + P3 = UI1 + UI2 + UI3 = UI.

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.

1.6. Режимы работы электрической цепи

При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов.

Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 1.23).

Рис. 1.23

Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса.

Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления

.

Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС Eэ и внутренним сопротивлением r , нагрузкой для которого является входное сопротивление пассивного двухполюсника Rвх = Rн .

Режим работы электрической цепи (рис. 1.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки Rн . При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.

Работа активного двухполюсника под нагрузкой Rн определяется его вольт-амперной (внешней) характеристикой, уравнение которой (1.10) для данной цепи запишется в виде

(1.12)

U = Eэ - Ir .

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 1.24), соответствующим режимам холостого хода и короткого замыкания.

1. Режим холостого хода

В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх

U = Uхх = Eэ .

Рис. 1.24

2. Режим короткого замыкания

В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление Rн =0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U = IRн , а уравнение (1.12) вольт-амперной характеристики можно записать в виде

(1.13)

.

Значение тока короткого замыкания Iк .з соответствует т.2 на вольт-амперной характеристике (рис. 1.24).

Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r могут быть определены по результатам режимов холостого хода и короткого замыкания:

(1.14)

Eэ = Uхх ; .

При изменении тока в пределах активной двухполюсник (эквивалентный источник) отдает энергию во внешнюю цепь (участок I вольт-амперной характеристики на рис. 1.24). При токе I<0 (участок II) источник получает энергию из внешней цепи, т.е. работает в режиме потребителя электрической энергии. Это произойдет, если к зажимам аb двухполюсника присоединена внешняя цепь с источниками питания. При напряжении U<0 (участок III) резисторы активного двухполюсника потребляют энергию источников из внешней цепи и самого активного двухполюсника.

3. Номинальный режим

К-во Просмотров: 585
Бесплатно скачать Реферат: Электрические цепи постоянного тока и методы их расчета