Реферат: Електромагнітні хвилі
Рис. 4
Розглянемо замкнутий контур в системі координат Еz ,o,x , сторони якого відповідно дорівнюють і Δх. Запишемо для цього замкнутого контуру рівняння Максвелла (1)
(7)
Оскільки ліві сторони рівнянь (7) відповідають рівнянню Максвелла (1), то праві сторони цих рівнянь можна прирівняти. Після незначних спрощень одержуємо
. (8)
В граничному випадку, коли рівняння (8) набуде вигляду
де – , зв’язок індукції магнітного поля з напруженістю цього поля. З урахуванням цього зауваження формула (8) набуде вигляду
(6.9)
Рівняння Максвелла (3) використаємо до замкнутого контуру в координатній площині Нy ,o,x (рис.4), вважаючи що вільні електричні заряди відсутні, а тому струм провідності jdS = 0
(10)
Оскільки ліві сторони рівнянь (10) однакові, то й праві сторони однакові. Прирівняємо праві сторони цих рівнянь, одержимо
В граничному випадку, коли , одержимо
(11)
Оскільки , то рівняння (11) набуде вигляду
. (12)
Продиференціюємо рівняння (12) по координаті х, одержимо
(13)
Замість виразу в душках правої сторони рівняння (13) підставимо його значення з рівняння (9), одержимо
. (14)
Продиференціюємо по координаті х рівняння (9)
(15)
Похідну в душках правої сторони рівняння (15) замінимо на відповідну похідну з рівняння (12), одержимо
(16)
З рівнянь (14) і (16) шляхом незначних перетворень одержуємо хвильові рівняння електромагнітних хвиль
(17)
Аналогічні до (17) хвильові рівняння можна одержати, якщо кожне з рівнянь (6) двічі диференціювати за часом і координатою і виключити з них функцію косинуса, тобто