Реферат: Энтропия

Большое число рисков связано с природными явлениями. Их можно объединить под именем «экологические». К ним относятся, в частности риски, связанные с неопределенностью ряда природных явлений. Типичным примером является погода, от которой зависят урожайность (а потому и цены на сельскохозяйственные товары), расходы на отопление и уборку улиц, доходы от туризма и др. Особое значение имеют риски, связанные с недостаточными знаниями о природе (например, неизвестен точный объем полезных иско­паемых в том или ином месторождении, а потому нельзя точ­но предсказать развитие добывающей промышленности и объем на­логовых поступлений от ее предприятий). Нельзя забывать о рисках экологических бедствий; и катастроф типа ураганов, смерчей, земле­трясений, цунами, селей и др.

В настоящее время при компьютерном и математическом модели­ровании для описания неопределенностей все чаще используют такой метод, как энтропия. Некоторые виды неопределенностей связаны с безразличными к организации силами — природными (погодные условия) или обще­ственными (смена правительства).

Разнооб­разные формальные методы оценки рисков и управления ими во многих случаях (реально во всех нетривиальных ситуациях) не мо­гут дать однозначных рекомендаций. В конце процесса принятия решения — всегда человек, менеджер, на котором лежит ответст­венность за принятое решение.

Поэтому процедуры энтропии естественно при­менять не только на конечном, но и на всех остальных этапах анали­за рассматриваемого организацией проекта, используя при этом весь арсенал теории и практики энтропии.

Рассмотрим использования энтропии на примере прогноза погоды.

Пусть для некоторого пункта вероят­ность того, что 15 июня будет идти дождь, равна 0,4, а вероятность того, что дождя не будет, равна 0,6. Пусть далее для этого же пункта вероятность дождя 15 октября равна 0,8, а вероятность отсутствия дождя в этот день — всего 0,2. Предположим, что определенный метод прогноза погоды 15 июня оказывается правильным в 3/5 всех тех слу­чаев, в которых предсказывается дождь, и в 4/5 тех случаев, в которых предсказывается отсутствие осадков; в приме­нении же к погоде 15 октября этот метод оказывается правильным в 9/10 тех случаев, в которых предсказывается дождь, и в половине случаев, в которых предсказывается отсутствие дождя (сравнительно большой процент оши­бок в последнем случае естественно объясняется тем, что предсказывается маловероятное событие, предугадать ко­торое довольно трудно). Спрашивается, в какой из двух указанных дней прогноз дает нам больше информации о ре­альной погоде?

Обозначим через β1 и β2 опыты, состоящие в определе­нии погоды в рассматриваемом пункте 15 июня и 15 октяб­ря. Мы считаем, что эти опыты имеют всего по два исхода — В (дождь) и (отсутствие осадков); соответствующие таблицы вероятностей имеют вид:

Опыт β1

исходы

В

вероятн.

0,4

0,6

Опыт β2

исходы

В

вероятн.

0,8

0,2

Следовательно, энтропии опытов β1 и β2 равны

Н (β1 ) = -0,4 log 0,4 — 0,6 log 0,6 0,97 бита,

Н (β2 ) = - 0,8 log 0,8 - 0,2 log 0,2 0,72 бита.

Пусть теперь α1 и α2 — предсказания погоды на 15 июня и на 15 октября. Опыты α1 и α2 также имеют по два исхода: А (предсказание дождя) и (предсказание сухой погоды); при этом пары опытов (α1, β1 ) и (α22 ) ха­рактеризуются следующими таблицами условных вероят­ностей:

Пара (α1, β1 )

К-во Просмотров: 769
Бесплатно скачать Реферат: Энтропия