Реферат: Фазовая инверсия

2. Проницаемость осадителя из второй ванны в первую, должна позволять замедленное расслоение в первой ванне.

3. Значительное содержание первого осадителя во второй ванне не должно мешать мгновенному распаду во второй ванне.

Из всего вышеизложенного следует вывод о важности выбора осадителей и определении оптимального времени пребывания полимерного раствора в первом осадителе.

Данные о времени запаздывания для разных комбинаций осадителей и раствотителей, а также коэффициенты диффузии растворителя в осадитель и осадителя в растворительприведены в таблице 1[2-3].

Таблица 1. Время запаздывания для раствора, состоящего из 35%(мас.) полиэфирсульфона (ПЭС) и 10% глицерина в NМП, погруженного в различные осадители. (25 о С)

Осадитель Вязкость, сПуаз Время запаздывания, с D0 N МП/ NS *106 см2 D0 NS/N МП *106 см2
Вода 1,00 0 8,7 18,0
Метанол 0,60 0 16,2 12,6
Этанол 1,22 0 8,5 10,5
2-пропанол 2,40 200 4,7 9,6
1-бутанол 2,95 220 4,2 8,7
1-пентанол 3,31 440 3,9 8,0
в присутствии воды 0
1-октанол 8,93 600 1,7 6,6
в присутствии воды 0
Циклогексанол 49,8 600 0,3 7,9
Глицерин 945 1200 0,02 9,0
1,4-бутандиол 70 0 » 0,2 » 8,4
Гликоль 17,4 0 0,7 10,6

Как видно из таб.1, осадители с тремя или более углеродными атомами имеют значительное время запаздывания и могут использоваться как первые осадители.

Различие коэффициентов диффузии осадителей в растворитель не имеет принципиального значения, так как диффузия происходит не в чистый растворитель, а в полимерный раствор высокой вязкости.

Обратный коэффициент диффузии (D0 N МП/ NS ) более важен, так как минимальная скорость обмена растворителя на осадитель определяется минимальным значением коэффициента D0 N МП/ NS . При низкой скорости обмена (малое значение D0 N МП/ NS ) проходит относительно длинный период времени для удаления растворителя в количестве, достаточном для расслоения.

На рис.1 приведена зависимость свободной энергии Гибса полимерного раствора от состава. На рисунке отрезки МА и ВN соответствуют метастабильному, а область составов АВ – нестабильному состоянию полимерного раствора.

Соответственно, если в массе полимерного раствора создать области с различной концентрацией полимера, то, при фазовом разложении, полимерный раствор распадется на две фазы разного состава. При этом фаза с повышенной концентрацией полимера (точка N на рис.1.) образует плотный слой мембраны, а обедненная по полимеру фаза (точка М) – пористую подложку мембраны.

Гомогенный полимерный раствор формируется в виде полого волокна . Наружная поверхность раствора контактирует осадителем обеспечивающим запаздывающий тип расслоения. В результате в наружном слое образуется фаза с повышенной концентрацией полимера (на границе раздела раствор – осадитель). В слое полимерного раствора, расположенном сразу под наружным, также наблюдается увеличение концентрации полимера.

Внутренняя поверхность полимерного раствора контактирует с осадителем, обеспечивающим мгновенный распад раствора. В результате, раствор с внутренней стороны распадается на две равновесные фазы: фаза, обедненная полимером (образует крупные поры), и фаза более богатая полимером (образует структуру подложки мембраны).

После кратковременного контакта полимерного раствора с «мягким» осадителем, раствор помещают в «жесткий» осадитель (как правило второй осадитель соответствует внутреннему осадителю), где происходит фазовое разделение полимерного раствора и окончательное закрепление структуры мембраны.

В результате структуру полученной мембраны можно описать следующим образом:

1. с наружной поверхности – тонкий непористый слой. Толщина слоя зависит от времени контакта раствора с осадителем и составляет один или менее микрометра;

2. с внутренней поверхности – пористый слой, толщина которого сравнима с толщиной стенки волокна;

3. слой с промежуточной структурой, расположенный непосредственно под плотным слоем. Как правило, структура этого слоя является закрытоячеистой, а его толщина сравнима с толщиной плотного слоя.

Рис. 1.Изменение свободной энергии

смешения Гиббса с составом при

постоянных температуре и давлении

Практическое осуществление данного метода было разработано Jaap van’t Hof [2] и получило название “метод двойной коагуляционной ванны”.

Литература.

1. A.J. Reuvers, C.A. Smolders, J. Membr. Sci., 1 (1976) 99

2. Jaap van’t Hof

3. R.C. Reid, J.M. Prausnitz, B.E. Poling, ‘The properties of gases and liquids’,

B. Sun, G.H. Fleck (eds.), McGraw-Hill Book Company, New York, 1987

К-во Просмотров: 230
Бесплатно скачать Реферат: Фазовая инверсия