Реферат: Физико-химические основы термовакуумного испарения и осаждения материалов
Применяются в вакуумных установках для создания вакуума около 10-1 Па при быстроте действия порядка единиц и десятков литров в секунду. Наибольшее распространение получили пластично-роторные механические насосы с масляным уплотнением, основными конструктивными элементами которых являются корпус, камера и ротор. Механические двухроторные насосы (насосы Рутса) применяют в вакуумных системах для создания давления порядка 10-2 Па, при быстроте действия 50 л/с, т.е. обеспечивают вакуум, при котором механические пластинчато-роторные насосы не эффективны.
Диффузионные паромасляные насосы.
Являются наиболее распространенными высоковакуумными насосами, широко применяются в различных областях вакуумной техники.
Паромасляные насосы позволяют создавать вакуум до 10-5 Па.
Паромасляные насосы не работают без предварительного механического насоса, подсоединяемого к их выходному патрубку и обеспечивающему предварительное разряжение, а также без водяного охлаждения кожуха. Прекращение подачи воды в водяную рубашку может привести к перегреву насоса и сгоранию масла, а следовательно к нарушению нормальной работы.
Недостаток диффузионных паромасляных наосов – возможность попадания в откачиваемый рабочий объем молекул масла, что может происходить двумя путями: пролетом в паровой фазе и миграцией по стенкам вакуумных трубопроводов. Так как проникшие в технологический объем молекулы масла оседают на подложках и загрязняют наносимые пленки, такие насосы применяют в технологических установках только в сочетании с ловушками паров масло.
Криогенные насосы.
Являются безмаслянными средствами откачки и поэтому получили наибольшее распространение при нанесении тонких пленок.
Криогенные насосы позволяют создавать вакуум до 10-5 .
Принцип действия этих насосов основан на физических явлениях, происходящих при сверхнизких – криогенных (120-4 К) температурах: конденсации на охлажденных металлических поверхностях газов в твердое состояние и адсорбции (поглощении) их твердыми охлажденными пористыми адсорбентами.
Наибольшее распространение получили криогенные насосы, охлаждаемые газовыми холодильными машинами – криогенераторами. Криогенные насосы состоят из четырех основных элементов: криопанели, защитного экрана, корпуса и системы охлаждения – криогенератора.
Турбомолекулярные насосы.
Относятся к механическим высоковакуумным насосам и их принцип действия основан на сообщении молекулам откачиваемого газа направленного движения поверхностью быстро вращающегося твердого тела. После соударения с этой поверхностью молекулы газа начинают двигаться преимущественно а направлении движения твердого тела, т.е. в направлении откачки.
Турбомолекулярные насосы позволяют создавать вакуум порядка 10-5 Па.
При эксплуатации турбомолекулярных насосов надо следить, чтобы в их полость не попали какие-либо твердые инородные частицы и предметы, что может привести к заклиниванию быстро вращающегося ротора и выходу насоса из строя.
6.3 Средства измерения вакуума
Давление в вакуумных установках для нанесения тонких пленок обычно составляет 102 -10-5 Па.
В таком широком диапазоне измерять давление одним универсальным прибором невозможно. В настоящее время разработано большое количество приборов различных типов, принцип действия которых основан на зависимости того или иного физического параметра газа от давления. Каждому из этих приборов соответствует определенный интервал давлений.
Приборы для измерения давлений ниже атмосферного, называемые вакуумметрами, состоят из двух частей: манометрического преобразователя и измерительного устройства. Манометрический преобразователь предназначен для преобразования измеряемого давления в пропорциональную ему электрическую величину и подсоединяется непосредственно к вакуумной системе. Измерительное устройство служит для измерения этой величины с индикацией на шкале, проградуированной в единицах давления.
При нанесении тонких пленок используют тепловые, магнитные электроразрядные и ионизационные электронные вакуумметры.
Тепловые вакуумметры основаны на пропорциональной зависимости теплопроводности газа от его плотности и подразделяются на приборы сопротивления и термопары. В основе действия преобразователя вакуумметра сопротивления лежит зависимость сопротивления металлической нити от температуры. Принцип действия термопарного вакуумметра состоит в том, что при понижении давления газа его теплопроводность уменьшается, а следовательно, повышается температура перемычки и изменяется ЭДС, по значению которой, используя градуировочную кривую, определяют давление газа.
Достоинством является простота конструкции, возможность применения для измерения давления любых газов и паров. Недостатками таких вакуумметров являются инерционность и изменение во времени тока накала металлической нити, что требует их периодической регулировки.
Ионизационные вакуумметры имеют преобразователь, принцип действия которого основан на прямой зависимости между давлением и током, образующимся в результате ионизации молекул остаточных газов.
Магнитные электроразрядные вакуумметры имеют преобразователь принцип действия которого основан на зависимости тока самостоятельного газового разряда, возникающего в скрещенных магнитном и электрическом полях от давления.[5]
Заключение
Вакуумная техника занимает важное место в производстве пленочных структур ИМС. Для создания вакуума в рабочей камере из нее должны быть откачены газы. Идеальный вакуум не может быть достигнут, и в откаченных рабочих камерах технологических установок всегда присутствует некоторое количество остаточных газов, чем и определяется давление в откаченной камере.
пленка вакуум испарение насос
Литература
1. Сушенцов Н.И, Филимонов В.Е. «Основы технологии микроэлектроники». Йошкар-Ола, 2003. стр. 132.