Реферат: Формально-логические модели конфликтов
где перечисленные в ломаных скобках множества и отношения связаны друг с другом, как это было описано выше. Математическая теория игр занимается изучением конфликтов (игр) именно в этом понимании.
Смешанная стратегия игрока есть вероятностное распределение на множестве его чистых стратегий.
Ситуация равновесия
Пусть дан конфликт (игра) Г. Говорят, что ситуация (т.е. n-набор стратегий) (si*, s2**,..., sn *) равновесна, или что она является ситуацией равновесия, если для любого i = 1, ..., п и для любого s1ÎSi имеет место неравенство
.
Другими словами, ситуация равновесна, если ни один игрок не имеет никаких разумных оснований для изменения своей стратегии при условии, что все остальные игроки собираются придерживаться своих стратегий. В этом случае, если каждый игрок знает, как будут играть остальные, он имеет основание придерживаться той стратегии, которая соответствует этой ситуации равновесия; тем самым игра становится весьма устойчивой.
Не все игры имеют ситуацию равновесия. Например, игра в орлянку такой ситуации не имеет.
Если конфликт не имеет ситуаций равновесия, то обычно некоторые игроки пытаются отгадать стратегии остальных участников, сохраняя собственные стратегии в тайне. Что постоянно приводит к нестабильности в развитии взаимодействия. Это наводит на мысль (и это действительно верно), что в конфликтах с полной информацией ситуации равновесия существуют.
Классификация конфликтов (игр)
В качестве первого классификационного признака возьмем множество коалиций интересов Âи. Если это множество пусто, то конфликт вырождается в явление, в исходах которого никто не заинтересован. Математические модели такого рода явлений составляют содержание традиционной описательной математики.
Если множество Âu состоит из единственной коалиции интересов, то мы также имеем конфликт, выродившийся в явление, в котором единственная заинтересованная сторона стремится выбрать наиболее предпочтительную для себя ситуацию.
Математическая трактовка этого круга вопросов сводится к разного рода экстремальным задачам, классическим, как, например, решаемые в дифференциальном или вариационном исчислениях или современным, которые составляют предмет различных отраслей оптимального программирования (линейное, дискретное, динамическое, стохастическое и т.д.).
Собственно теория игр начинается тогда, когда множество Âu. насчитывает не менее двух заинтересованных сторон.
Следующий признак — количество коалиций действия. Ясно, что рассмотрение конфликтов с пустым множеством коалиций действия лишено смысла: множество ситуаций состоит более чем из одного элемента и вопрос об отношении предпочтения вообще не возникает.
Если в конфликте имеется одна коалиция, то исследование конфликта уже становится содержательным. В этом случае имеется единственное множество стратегий sk, а множество всех ситуаций является его подмножеством: S Ì sk. Поэтому рассмотрение подобного конфликта можно начинать с этого множества ситуаций, считая их стратегиями единственной коалиции действия. Поскольку для таких конфликтов стратегии совпадают с ситуациями, можно применительно к ним термин «стратегия» не употреблять вовсе. В связи с этим такого рода конфликты принято называть нестратегическими.
Нестратегическим конфликтам противостоят конфликты, в которых участвуют более одной коалиции действия. Они называются стратегическими. В большинстве работ по теории игр рассматриваются такие стратегические конфликты, в которых множества коалиций действия и коалиций интересов совпадают (как те, так и другие коалиции называют в этом случае игроками), множество ситуаций совпадает с декартовым произведением множеств стратегий:
S = П SK,
к ÎÂd.
а отношения предпочтения (для игроков) определяются соответствующими функциями. Такие конфликты называются бескоалиционными.
Важным частным случаем бескоалиционного конфликта является тот, когда число игроков равно двум, а значения функций выигрыша в любой ситуации равны по величине и противоположны по знаку:
Н1 (s) = ¾ H2 (s).
Такие конфликты называются антагонистическими, или конфликтами двух лиц с нулевой суммой.
Основным изучавшимся во многих исследованиях принципом оптимальности в бескоалиционных конфликтах являлось стремление игроков к ситуациям равновесия. Этот принцип оптимальности иногда называют принципом осуществимости цели, потому что только ситуации равновесия могут быть предметом предварительных договоров, которые будут соблюдаться. (Если в договоре зафиксирована неравновесная ситуация, то хотя бы один из игроков будет заинтересован в нарушении договора и ситуация фактически не будет достигнута.)
В случае антагонистического конфликта принцип осуществимости цели превращается в принцип максимина, а ситуации равновесия становятся седловыми точками.
Принцип осуществимости цели, подобно принципам оптимальности в нестратегических конфликтах, страдает неполнотой: соответствующие ему решения конфликта (т.е. ситуации равновесия) для многих игр не существуют; вместе с тем многие игры имеют и более одного решения. Отсутствие у конфликта решений достаточно успешно преодолевается введением так называемых «смешанных стратегий», преодоление же множественности решений является важной и нерешенной пока проблемой.