Реферат: Формы, механизмы, энергия наномира
Это создало бы предпосылки для освоения планет солнечной системы специальными исследовательскими станциями с космонавтами на борту. Ведь одна из главных проблем, стоящих перед такой экспедицией – энергетическая, связанная с необходимостью брать на борт огромные запасы химического топлива. Использование ядерного реактивного двигателя также не снимает проблему полностью, т. к. необходимы запасы рабочего вещества двигателя; кроме того, ядерный реактор на борту – это потенциальная угроза не только членам экипажа, но и окружающей среде, особенно на старте.
Если же за основу реализации проекта принять описанный крест, то его следует изготовить таким образом, чтобы корпус креста использовался одновременно в качестве двигателя. Для движения предназначается только поверхность такого креста, а внутреннюю часть тогда можно использовать для размещения космонавтов и грузов.
Правда, описанные космические корабли неудобны для передвижения в атмосфере из-за большого сопротивления воздуха и относительно малой силы тяги двигателя. Такой принцип лучше использовать при создании крупногабаритных космических станций, отсеки которых выводятся на орбиту по отдельности.
Такого рода космическая станция или "крестолет" (см. рис. 9), задумана одновременно и как двигатель. Она способна транспортировать космонавтов с необходимой аппаратурой на большие расстояния (даже к самым далеким планетам Солнечной системы, например к Нептуну и Плутону. А до ближайшей звезды можно, в принципе, добраться за 5 лет, разгоняясь и тормозя с ускорением 1 g). Благодаря большим размерам в ней могут быть размещены более компактные летательные аппараты, предназначенные для вхождения в атмосферу исследуемых планет.
На поверхности сферы-конденсатора можно разместить источники энергии, а полученный ток использовать для движения и нужд корабля. Но в принципе уже сегодня, пока эти источники энергии еще не созданы, можно добавить солнечные батареи. Конечно, при таком источнике энергии сила тяги не будет большой, но для разгона в космосе, согласно хотя бы формуле Циолковского, не нужна большая тяга. На случай непредвиденных ситуаций (например, попадания корабля в поле тяготения какого-либо космического тела) можно оборудовать станцию запасными реактивными двигателями. Напоминаем, что пока эта станция предназначена не для взлета или посадки, а исключительно для транспортировки космонавтов и грузов на достаточно большие расстояния. Из известных сейчас наше решение обещает быть самым эффективным, поскольку для движения станции не нужны внутренние запасы топлива.
Понятно, что для воплощения в жизнь этих проектов предстоит решить массу сложнейших проблем.
Мы убеждены, что такие двигатели и источники энергии в конце концов все-таки будут созданы, а "крестолеты" и энергия наномира будут использоваться в целях не разрушения, а созидания. Думал ли, например, К.Э. Циолковский, что уже в этом веке нога человека будет ступать по неземной поверхности? Поэтому хочется верить, что уже в следующем столетии российское небо и просторы Солнечной системы будут бороздить принципиально новые летательные аппараты – "крестолеты" отечественного производства.
Список литературы
Бергман Дэвид Лукас. Физические модели атомных ядер, "Галилеевская электродинамика", №1, 1996
Бергман Дэвид Лукас. Модели элементарных частиц, "Галилеевская электродинамика", т. 2, 1997
Брагинский В.Б., Багдасаров Х.С., Ильченко В.С. Собственные и несобственные потери СВЧ в совершенных монокристаллах. – Препринт физического ф-та МГУ, 1986 г., №5/1986, 4 с.
Горелик Г.Е. Первые шаги квантовой гравитации и планковские величины. М.: Наука, 1983. – 334 с.
Де Бройль Л. Волны и кванты. – УФН, 1967, т. 178.
Джеммер М. Эволюция понятий квантовой механики: 1985, 384 с.
Иванов Ю.Н. Ритмодинамика. – М.: Новый центр, 1997, 312 с.
Киржниц Д.А., Линде А.Д. Фазовые превращения в физике элементарных частиц и космологии. М.: Знание, 1982 с. 165.
Лекции по геометрическим основам кристаллографии: Текст лекций / Р.В. Галиулин; Уральский государственный университет, Челябинский государственный университет. Челябинск, 1989. 81 с.
Логунов А.А. Лекции по теории относительности и гравитации: Современный анализ проблемы. – М.: Наука. 1987. – 272 с.
Лорентс (Лоренц) Г.А. Теории и модели эфира. – М-Л.: НКТП, 1936 (Лекции 1901-1902). – 70 с.
Лоренц Г.А. Электромагнитные явления в системе, движущейся с любой скоростью, меньшей скорости света. – М.: Атомиздат, 1973, с. 67-90.
Максвелл Дж. К. Избранные сочинения по теории электромагнитного поля. – М.,1954. с. 17.
Намбу Е. Кварки. – М.: Мир, 1984. 225 с.
Планк М. Единство физической картины мира. – М.: Наука, 1966.
Фейнман Р. Характер физических законов. – М.: Мир, 1968 – 232 с.
Фейнман Р. КЭД – странная теория света и вещества. – М.: Наука, 1988. – 144 с.
Физика за рубежом. 1988. Серия Б: Сборник статей. – М.: Мир, 1988.
Шеффер Клеменц. Теоретическая физика, Т 3, ч. 1. – М-Л.: ОНТИ МКТП СССР, 1937.
Шустер Г. Детерминированный хаос: Введение: – М.: Мир, 1988 – 240 с.
Эйнштейн А. Собрание научных трудов. Т 1. (Работы по теории относительности 1905 – 1920 г.) – М.: Наука, 1965.
Энциклопедия на CD-ROM "Формы, механизмы, энергия наномира" (издается с 1995 г. в НПО "Политехнология" при МГТУ им. Н.Э. Баумана).