Реферат: Функции алгебры логики. Логический базис

Радиоэлектроника в настоящее время во многом определяет научно- технический прогресс и объединяет ряд отдельных областей науки и техники, развившихся из радиотехники и электроники.

Радиотехника - область науки и техники, связанная с разработкой устройств и систем, обеспечивающих генерирование, усиление, преобразование, хранение, а также излучение и прием электромагнитных колебаний радиочастотного диапазона, используемых для передачи информации.

В современных радиотехнических системах и комплексах до 90% разрабатываемых устройств реализуется на элементах цифровой и вычислительной техники и используются цифровые методы обработки сигналов.

В настоящее время бурно развивается по экспоненциальному закону вычислительная техника и ее элементная база. А не так давно первые интегральные микросхемы (1958 год) содержали до десяти транзисторов. Сегодня современные микропроцессоры содержат до 10 миллионов транзисторов на один кристалл, и менее чем через десять лет это число достигнет 100 миллионов транзисторов.

Уже отошла в историю дискретная схемотехника, когда различные узлы строились на печатных платах с использованием отдельных навесных радиоэлектронных компонентов: транзисторов, резисторов, конденсаторов и других элементов. Ранее соединения выполнялись с помощью внешнего печатного монтажа, теперь соединения и монтаж осуществляется внутри кристалла. Поэтому современный инженер электронной техники должен владеть передовыми методами и технологиями, чтобы уметь приспособить их завтра к вычислительной технике будущих поколений, овладеть практическими приемами проектирования устройств на программируемых логических интегральных схемах.

Логические выражения n двоичных переменных с помощью конечного числа логических операций можно рассматривать как некоторую функцию, отражающую взаимную связь между входными и выходными переменными. Логические операции конъюнкции и дизъюнкции можно представить простейшими функциями вида: и . Эти функции называются аналогично логическим операциям – функциями И и ИЛИ.

Такие ФАЛ подобно логическим выражениям могут быть заданы аналитическим и табличным способами.

При аналитическом способе ФАЛ задается в виде логических выражений, получаемых путем логических преобразований с помощью законов и правил Булевой алгебры.

При табличном способе ФАЛ задается таблицей истинности, где число всех возможных наборов (комбинаций) аргументов конечно. Если число аргументов ФАЛ равно n, то число их возможных наборов , а число различных функций , тогда при n=2, F=16. Составим таблицу истинности для функций двух аргументов.

Таблица 1.

Аргументы Функции
.
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

В таблице 1 приведены элементарные ФАЛ двух аргументов. В левой части таблицы перечислены все возможные наборы аргументов и , в правой части приведены значения ФАЛ на соответствующих входных наборах. Значения всей совокупности этих наборов переменных представлены в таблице последовательностью чисел в двоичной системе счисления.

Каждая ФАЛ обозначает одну из 16 возможных логических операций над двумя переменными и , имеет свою таблицу истинности, собственное название и условное обозначение.

Основные сведения об элементарных функциях даны в таблице 2. Таблицы истинности для каждой ФАЛ составляются отдельно по таблице 1.

Таблица 2

Функция Операционные символы Обозначения, названия Зарубежные аналоги
0 Константа 0 Const 0
И – лог. умножитель AND – Conjunctor
Запрет Inhibition
Повторитель BF – Buffer
Запрет Inhibition
Повторитель BF – Buffer
Исключающее ИЛИ Exlusive – OR
ИЛИ – лог. сумматор OR – Disjunctor
ИЛИ – НЕ, функция Пирса

NOR,

PeersF.

Исключ. ИЛИ – НЕ EX – NOR
НЕ – инвертор NOT – Invertor
Импликатор Implicator
НЕ – инвертор NOT – Invertor
Импликатор Implicator
И – НЕ, функция Шеффера NAND, Shaffer F.
1

Генератор 1

Generator 1

В таблице 2 часто применяемыми являются функции:

-повторители 1-го и 2-го аргументов;

– инверсии 1-го и 2-го аргументов;

– функция И (конъюнкция), логическое умножение;

– функция И-НЕ (базис Шеффера);

– функция ИЛИ (дизъюнкция), логическое сложение;

– функция ИЛИ-НЕ (базис Пирса);

– функция неравнозначности, реализуется ЛЭ “Исключающее ИЛИ” (сумматор по модулю два);

– функция равнозначности реализуется ЛЭ “Исключающее ИЛИ-НЕ”.

Рассмотренные элементарные функции двух аргументов играют важную роль при преобразованиях сложных логических выражений, а также при преобразовании функциональных цифровых узлов.

Функции n переменных, значения которых заданы во всех точках области определения, считаются полностью определенными ФАЛ. Если какая-либо функция имеет запрещенные наборы переменных и ее значения на указанных наборах не определены, то такая ФАЛ называется не полностью определенной. Такие наборы будем отмечать в таблицах истинности (*) и при необходимости доопределять их значениями 0 и 1. Эти вопросы будут рассматриваться позже.

Логические функции, которые считаются полностью определенными, могут быть представлены различными формами.

ДНФ – дизъюнктивная нормальная форма записи ФАЛ представляется в виде суммы (дизъюнкции) ряда элементарных членов (минтермов), каждый из которых является произведением (конъюнкцией) аргументов или их инверсий. Термин “нормальная форма” предполагает, что в логическом выражении, задающем функцию, последовательно выполняются не более двух базовых операций (кроме инверсии).

Запишем ФАЛ в ДНФ:

; (1)

Функцию (3.19) можно записать в виде дизъюнкции минтермов:

,

где - конъюнкции аргументов ФАЛ, называемые минтермами.

СДНФ – совершенная дизъюнктивная нормальная форма записи ФАЛ представляется в ДНФ, где в каждом элементарном члене (минтерме), имеющем одинаковую размерность, представлены все аргументы функции или их инверсии.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 223
Бесплатно скачать Реферат: Функции алгебры логики. Логический базис