Реферат: Функції та способи їх задання

Функція буде ні парною, ні непарною, якщо для х D , f (- x ) f ( x ) .

Приклад: у = cos х — парна функція (графік функції симетричний від­носно осі ординат (рис. 3.2)), бо у(х)= cos (- х)= cosx =у(х);у= arctgx — непарна функція (графік функції симетричний відносно початку координат (рис. 3.3)), бо у(- х)= = arctg (- х)= - arctgx = - у(х); у = arccosx — ні парна, ні непарна (рис. 3.4), бо у(-x)= arccos (- х)= - arccosx * ± у(х ).

Означення : Функція у = f ( x ) називається періодичною, якщо для х D виконується умова f ( x +Т) = f ( x - T ) = f ( x ) , де число Т — період функції.

Приклад : у = tgx — періодична функція з мінімальним періодом Т =

(див. рис. 3.5), бо tg ( x +) = tg ( х -) = tgx .

Означення : Функція у - f ( x ) називається обмеженою на множині D , якщо для всіх х D виконується умова де М > 0 — деяке скінченне число.

Приклад : y = arcsinx — обмежена функція для всіх х [- 1; 1] (рис. 3.6), бо

Означення : Функція у - f ( x ) називається монотонно зростаючою (спадною) на множині D , якщо для всіх х D більшому значенню аргумента відповідає більше (менше) значення функції, тобто

Приклад : у = loga х — монотонно спадна функція при 0 < а <1 , а при а > 1 — монотонно зростаюча (рис. 3.7).

3.1.3. Елементарні функції

Основні з них:

1) степенева у = ха ;

1) степенева у = х а ;

2) показникова у = ах , а > 0, а 1 (рис. 3.8);

3) логарифмічна у = log а х, а > 0, а 1 (рис. 3.7);

4) тригонометричні: у = cosx (рис. 3.2); у = sinx (рис. 3.9); у = tgx (рис. 3.5); у = ctgx (рис. 3.10);

5) обернені тригонометричні: y = arcsinx (рис. 3.6); y = arccosx (рис. 3.4); у = arctgx (рис. 3.5); у = arcctgx (рис. 3.11).

Рис. 3.10 Рис. 3.11

Функція вважається елементарною, якщо вона може бути побудована з основних елементарних функцій за допомогою скінченного числа алгеб­раїчних дій та суперпозицій, наприклад

- елементарна функція.

Означення : Функція у=у(х) називається алгебраїчною, якщо у(х) — розв'язок рівняння

де Рі (х), i = ( О , n ) — многочлени.

Приклад : Функція буде алгебраїчною, бо вона є розв'язком рівняння

Усі неалгебраїчні функції називаються трансцендентними.

Алгебраїчні функції поділяються на раціональні (цілі й дробові) та ірраціональні.

Цілою раціональною функцією буде упорядкований многочлен

Дробово-раціональною функцією буде відношення многочленів

або

План практичних занять

1. Функції, їх властивості та області визначення.

Термінологічний словник ключових понять:

К-во Просмотров: 183
Бесплатно скачать Реферат: Функції та способи їх задання