Реферат: Функции
Пример . Пусть Х= {a; b; c; d; e}, У= {a; b; g; d}, Z= {1; 2; 3; 4; 5; 6}. Пусть f:Х ®У и g:У®Z – функции, определенные соответственно так:
f(a) = b, f(b) = a, f(c) = f(d) = f(e) = d;
g(a) = 3, g(b) = g(d) = 5, g(g) = 1.
Тогда композиция функций : Х®Z будет: а5, b3, с5, d5, e5.
Заметим, что множество значений композиции является подмножеством множества значений функции g, т.е. имеет место
Теорема 2 . Пусть ¦:Х®У и g:У®Z. Тогда () (Х) Íg (У) или Í.
Доказательство. Пусть zÎ (gf) (X), тогда существует хÎХ такой, что
()(х) = g(f(x)) = z. Пусть у=¦(х)ÎУ, тогда g(y) =z, поэтому zÎg(Y) и теорема доказана.
Теорема 3 . Пусть даны две функции f:Х®У и g:У®Z. Тогда если f и g обе инъективны, то композиция также инъективна, а если f и g обе сюръективны, то и композиция также сюръективна.
Доказательство. Пусть f и g – инъективны. Пусть х¢, х¢¢ÎХ, у¢=f(x¢), у¢¢=f(x¢¢). Тогда из равенства ()(х¢) = () (х¢¢) следует, что g(f(x¢)) = g(f(x¢¢)) или g(y¢) = g(у¢¢)Þ у¢ = у¢¢ (так как g инъективна) Þf(x¢) = f(x¢¢) (так как у¢ = f(x¢), у¢¢ = f(x¢¢) Þ х¢ = х¢¢ (так как f инъективна), следовательно – инъективна.
Пусть f и g сюръективны и zÎZ. Так как g сюръективна, то существует у Î У такой, что g(y) = z, и так как f сюръективна, то существует х Î Х такой, что f(x) = у.
Следовательно, существует х Î Х такой, что () (х) = g(f(x)) = g(y) = z, поэтому сюръективна.
Можно показать, что обратное утверждение не имеет места, то есть если композиция инъективна (сюръективна), то отсюда не следует, что f и g с неизбежностью являются инъективными (сюръективными). Для этого приведем следующий пример:
Пусть
Х= {х1 ; х2 }, У={у1 ; у2 ; у3 }, Z = {z1 ; z2 } и определим f:Х®У,
f(х1 ) = у1 , f(х2 ) = у2 ;
g:У®Z, g(у1 ) = Z1 , g(у2 ) = g(у3 ) = Z2 :
????, ??? f ? ??????????, ?? ?? ???????????; g ? ???????????, ?? ?? ??????????, ??? ?? ????? ?????????? ():ծZ ???? ()(?1 ) = z1 , ()(?2 ) = z2 , ?? ???? ???????????? ? ??????????, ? ???????????.
Рассмотренный пример приводит к следующей теореме:
Теорема 4 . Пусть даны две функции f:Х®У и g:У®Z. Тогда если композиция инъективна, то f также инъективна, а если композиция сюръективна, то g также сюръективна.
Доказательство. В обоих случаях применим метод доказательства с помощью контрапозиции. В первом случае высказывание контрапозиции будет следующим: если f – неинъективная, то и композиция – неинъективная. Предположим, что f – неинъективная, тогда существуют х¢, х¢¢ÎХ такие, что х¢¹х¢¢, но f(x¢) = f(x¢¢).
Следовательно, ()(х¢) = (g°f)(х¢¢), поэтому композиция функций также не инъективна.
Во втором случае высказывание контрапозиции будет таким: если g несюръективна, то композиция несюръективна. Предположим, что g несюръективна. Тогда множество значений этой функции g(У) является собственным подмножеством множества Z. Так как, по теореме 2, ()(Х) Íg(Y), то ()(Х) есть также собственное подмножество множества Z, поэтому композиция не является сюръективной функцией.