Реферат: Fuselage

Fuselage

The word fuselage is based on the French word fuseler, which means "to streamline." The fuselage must be strong and streamlined since it must withstand the forces that are created in flight. It houses the flight crew, passengers, and cargo. Fuselages are classified according to the arrangement of their force-resisting structure. The types of fuselages we will study are the truss and the semi-monocoque. Five types of stress act on an aircraft in flight: tension, compression, bending, shear, and torsion.

Tension: Tension is the stress which tends to pull things apart.

When you try to break a length of rope, you exert a type of stress which is called tension.

Compression: Compression is the opposite of tension. It is the stress which tends to push materials together. When you grasp a football at both ends and push, the ball is subject to compression. The landing gear struts of an aircraft are also subject to compression.

Bending: This type of stress combines tension and compression. You put a bending stress on a bar when you grasp it with both hands and push the ends together or when you bend a paper clip. The wing spars (interior structural members) are subjected to bending while the aircraft is in flight. The lower side of the spar is subjected to tension, while the upper side is subjected to compression. Obviously, some materials will break before they bend and often are unacceptable for aircraft construction.

Shear stress: Shear stress is caused by forces tending to slip or slide one part of a material in respect to another part. This is the stress that is placed on a piece of wood clamped in a vise and you chip away at it with a hammer and chisel. This type of stress is also exerted when two pieces of metal, bolted together, are pulled apart by sliding one over the other or when you sharpen a pencil with a knife. The rivets in an aircraft are intended to carry only shear. Bolts, as a rule, carry only shear, but sometimes they carry both shear and tension.

Torsion: Torsion is the stress which tends to distort by twisting. You produce a torsional force when you tighten a nut on a bolt. The aircraft engine exerts a torsional force on the crankshaft or turbine axis. All the members (or major portions) of an aircraft are subjected to one or more of these stresses mentioned in the paragraphs. Sometimes a member has alternate stresses, such as compression one instant and tension the next. Some members can carry only one type of stress. Wire and cables, for example, normally carry only tension.

Since any member is stronger in compression or tension than in bending, members carry end loads better than side loads. In order to do this, designers arrange the members in the form of a truss, or rigid framework. In order for a truss to be rigid, it must be composed entirely of triangles. When the load on a truss acts in one direction, every alternate member carries tension while the other members carry compression. When the load is reversed, the members which were carrying compression now are subjected to tension and those which were carrying tension are under compression. The truss itself consists of a welded tubular steel structure with longerons (horizontal members) and diagonal braces. These features make it rigid, strong, and light. The truss is covered with a metal or fabric cover so that less drag will be generated. To produce a smooth surface, the fabric cover is put on fairing strips, which are thin flat strips of wood or metal. These fairing strips run the length of the fuselage in line with the direction of flight.

The semi-monocoque is the most often used construction for modern, high-performance aircraft. Semi-monocoque literally means half a single shell. Here, internal braces as well as the skin itself carry the stress .The internal braces include longitudinal (lengthwise) members called stringers and vertical bulkhead. The semi-monocoque structure is easier to streamline than the truss structure. Since the skin of the semi-monocoque structure must carry much of the fuselage's strength, it will be thicker in some places than at other places. In other words, it will be thicker at those points where the stress on it is the greatest.

Unit II. FUSELAGE

Dialogue

T. Now, we shall consider the fuselage construction. Look at the picture (Fig.II.1.)-

Fuselage

T. This is the fuselage. The fuselage is the largest element of the airplane. The fuselage is the rigid framework. ‘Rigid framework’ is ‘жорсткий каркас’. The rigid framework is built of tubular steel and metal rings. ‘Tubular steel’ means ‘трубчата сталь. So, what is it built of?

S. The fuselage is the rigid framework built of tubular steel and metal rings.

T. Quite right. The framework is covered with a skin. ‘Skin’ means ‘обшивка’. The skin should be thin-walled. ‘A thin-walled skin’ is ‘тонкостінна обшивка’. I am sure that you know what material the skin may be made of.

S. The skin may be made of fabric, metal, glass or other material.

T. You are right. The framework itself consists of longitudinal and transversal members. The longitudinal members are stringers.

T. Look at this picture (Fig.II.2).

Fuselage T. These are longitudinal members. They are stringers. Stringers serve to stiffen the skin. ‘To stiffen’ means ‘надавати жорсткості’

T. Look at this picture (Fig.II.3).

Fuselage

Fuselage

T. You can see transversal members. Transversal members are formers and bulkheads. ‘Former’ means ‘шпангоут’. ‘Bulkhead’ is ‘переборка’. Formers and bulkheads are used to maintain the circular cross section of the fuselage. ‘Circular cross section’ is ‘круглий профіль’. The formers serve as a support for stringers and skin. Longitudinal and transversal members will make the contour of the fuselage.

Exercise 1. Remember the pronunciation end meanings of the followingwords:

extend - простягатися

machine - машина; механізм;літак

in outline - у загальних рисах

streamlined shape - обтічна форма

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 253
Бесплатно скачать Реферат: Fuselage