Реферат: Газы и тепловые машины

2. Процессы сжатия и расширения не идут адиабатически, а протекают, сопровождаясь теплообменом со стенками цилиндра. Явление теплообмена со стенками цилиндра имеет место также и в процессе сгорания.

3. Процесс сгорания не происходит при постоянном объеме, а начинается в точке 2’ (рис. 10) и кончается после точки 3. В процессе сгорания тепло получается не извне, а за счет изменения химического состава рабочего тела. Химическая реакция сгорания не успевает закончиться полностью на линии сгорания (2-3), а продолжается в течение процесса расширения вплоть до момента выхлопа.

4. Процесс охлаждения рабочего тела в действительности заменяется выхлопом и выталкиванием отработанных газов и последующим засасыванием рабочей смеси (линия 4’-4-5-1).

5. Процесс всасывания заканчивается позднее точки 1 (в точке 1’) так, что от точки 4’ до 1’ в цилиндре находится не постоянное количество рабочего тела.

КПД тепловых двигателей и второе начало термодинамики.

КПД тепловой машины определяется следующей формулой:

h=W/½QH ½

(5)

, где W - полезная работа совершенная этой машиной, QH - теплота сообщенная этой машине (Q взято под знак модуля, в связи с тем, что тепловой поток может иметь разное направление).

По закону сохранения энергии получаем соотношение:

½QH ½=W+½QL ½

, где ½QL ½ - количество теплоты отводимой при низкой температуре.

Таким образом, W=½QH ½-½QL ½, и КПД двигателя можно записать в виде:

Из этого соотношения видно, что чем больше будет КПД двигателя, тем меньше будет теплота½QL ½. Однако опыт показал, что величину ½QL ½ невозможно уменьшить до нуля. Если бы это было осуществимо, то мы получили бы двигатель с КПД 100%. То, что такой идеальный двигатель, непрерывно совершающий рабочие циклы, невозможен, составляет содержание ещё одной формулировки второго начала термодинамики:

Невозможен такой процесс, единственным результатом, которого было бы преобразование отобранной у источника теплоты Q, при неизменной температуре, полностью в работу W , так, что W=Q .

Эта утверждение известно как формулировка второго начала термодинамики Кельвина-Планка.

Существует также аналогичное утверждение относительно холодильника, высказанное Клаузисом:

Невозможно осуществить периодический процесс, единственным результатом, которого был бы отбор теплоты у одной системы при данной температуре и передача в точности такого же количества теплоты другой системе при более высокой температуре.

Уравнение Ван-дер-Ваальса.

В реальных тепловых двигателях используются реальные газы. Как было замечено поведение их заметно отклоняется, например, при высоком давлении, от поведения идеального газа. Ян Д. Ван-дер-Ваальс (1837-1923) исследовал эту проблему с точки зрения МКТ и в 1873 году получил уравнение более точно описывающее поведение реальных газов. Свой анализ он основывал на МКТ, но при этом учитывал:

A. Все молекулы имеют конечные размеры (классическая МКТ ими пренебрегает)

B. Молекулы взаимодействуют друг с другом всё время, а не только во время столкновений.

Предположим, что молекулы газа представляют собой шарики с радиусом r. Если считать, что такие молекулы ведут себя подобно твердым сферам, то две молекулы будут сталкиваться и разлетаться в разные стороны при расстоянии между центрами равным 2r. Таким образом, реальный объем, в котором могут двигаться молекулы несколько меньше, чем объем V сосуда содержащего газ. Величина этого "недоступного объема" зависит от объема молекул газа и от количества этих молекул. Пусть b представляет собой "недоступный объем" в расчете на один моль газа. Тогда в уравнении состояния идеального газа нужно заменить V на V-nb, где n - число молей газа, и мы получим:

P(V-nb)=nRT

Если разделить это выражение на n и считать, что величина v==V/n является объемом, который занят одним молем газа (v - удельный объем), то получим:

P(v-b)=RT

(9)

Это соотношение показывает, что при данной температуре давление

P=RT/(v-b)

К-во Просмотров: 772
Бесплатно скачать Реферат: Газы и тепловые машины