Реферат: Генетика человека и её методы

· гетероплоидия, или анеуплоидия, – изменение числа хромосом на одну или несколько хромосом в отдельных парах хромосом (трисомия – 2n+1, моносомия – 2n-1, нулисомия – 2n-2).

Изменения структуры хромосом (хромосомные аберрации):

· делеция (нехватка) – потеря участка хромосомы (ABCDEF > ABvDEF);

· дупликация – удвоение участка хромосомы (ABCDEF > ABBCDEF);

· инверсия – поворот участка хромосомы на 180° (ABCDEF > ABEDCF);

· транслокация – обмен участками между негомологичными хромосомами (ABCDEF – OPRS > ABCRS – OPDEF).

Причинами хромосомных мутаций чаще всего бывают нарушения мейоза (нарушения кроссинговера, расхождения хромосом и хроматид). Нерасхождение хроматид при митозе также может приводить к изменению числа хромосом в дочерних клетках. Кроме того, мутагены и особенно излучение вызывают разрывы хромосом и нарушения процесса мейоза.

Хромосомные мутации могут являться маркерами в цитогенетической методике исследования того или иного заболевания. Кроме того, этот метод используется для определения поглощенных людьми радиационных доз и в других научных исследованиях.

Биохимический метод основан на изучении характера биохимических реакций в организме, обмена веществ для установления носительства аномального гена или уточнения диагноза. Заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть генной наследственной патологии. К ним относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и другие. Этот метод позволяет установить болезнь на ранней стадии и лечить ее.

Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

Закон Харди–Вайнберга (известный также как закон генетического равновесия) – одна из основ популяционной генетики. Закон описывает распределение генов в популяции. Харди и Вайнберг показали, что при свободном скрещивании, отсутствии миграции особей и отсутствии мутаций относительная частота индивидуумов с каждым из этих аллелей будет оставаться в популяции постоянной из поколения в поколение. Другими словами, в популяции не будет дрейфа генов.

Харди Годфри Харолд (1877–1947), английский математик, родился в Кранли, графство Суррей. Сын учителя рисования. Изучал математику в Кембриджском и Оксфордском университете.

Вайнберг Вильгельм (1862–1937), немецкий врач, имевший большую частную практику в Штуттгарте. По воспоминаниям современников, помог появиться на свет 3 500 младенцам, в том числе, по крайней мере, 120 парам близнецов. На основании собственных наблюдений над рождением близнецов и переоткрытых генетических законов Менделя пришел к выводу, что предрасположенность к рождению двуяйцевых (неидентичных) близнецов передается по наследству.

Молекулярно-генетические методы. В последние годы уровень развития современной генетики позволяет широко использовать молекулярные методы для изучения молекулярных основ наследственности и изменчивости организмов, химической и физико-химической структуры генетического материала, его функций.

Изучение генетики человека позволяет диагностировать, лечить и предсказывать вероятность генетической аномалии. В настоящее время изучен характер наследования около 2 000 признаков. Для профилактики и прогнозирования вероятности генетического заболевания созданы медико-генетические консультации.

2. Наследственные заболевания человека

С генетической точки зрения наследственные заболевания представляют собой мутации в половых и соматических клетках. Все наследственные болезни человека принято делить на три группы:

· генные болезни,

· болезни с наследственной предрасположенностью,

· хромосомные.

Генные болезни связаны с мутациями отдельных генов за счет преобразования химической структуры ДНК – изменения последовательности нуклеотидов ДНК, выпадения одних и включения других. Это, в свою очередь, изменяет образующуюся на ДНК молекулу РНК и обусловливает синтез нового нетипичного белка, что приводит к появлению у организма новых свойств. В результате генной мутации повреждается один ген, поэтому такие наследственные заболевания называют моногенными. К ним относится большинство наследственных аномалий обмена веществ, таких как фенилкетонурия (нарушение обмена аминокислоты фенилаланина, приводящее впоследствии к развитию слабоумия), галактоземия (нарушение обмена молочного сахара лактозы, что приводит к отставанию физического и умственного развития), гипотиреоз (врожденное нарушение функции щитовидной железы) и т.д. К генным мутациям относятся также гемофилия, дальтонизм, серповидно-клеточная анемия, полидактилия, синдром Марфана (поражение соединительной ткани, высокий рост, удлинение конечностей, «паучьи пальцы») и др.

Генные, или точковые, мутации затрагивают структуру генов, т.е. происходит нарушение последовательности нуклеотидов в молекуле ДНК, а значит, изменяется генетическая информация, записанная в генетическом материале. Это вызывает нарушения в структурах молекул РНК и белков, а также в осуществлении процесса синтеза белка, что, в свою очередь, почти всегда приводит к изменению признаков организма. Наименьший участок молекулы ДНК, способный мутировать, называется мутон, он составляет одну пару нуклеотидов. Генные мутации часто происходят под влиянием химических мутагенов и являются результатом нарушения процесса репликации.

Обратная мутация – это мутация, которая приводит к полному восстановлению повреждения, т.е. к восстановлению исходной последовательности нуклеотидов в молекуле ДНК. Такие мутации в природе происходят очень редко.

Супрессорная мутация – при такой мутации в мутантном гене или в каком-то другом гене происходят изменения, обеспечивающие восстановление фенотипа организма, а исходное повреждение генетического материала (нарушение последовательности нуклеотидов в молекуле ДНК) сохраняется.

Мутационная изменчивость приводит к появлению новых генов (новых аллелей), новой структуры и числа хромосом и тем самым создает материал для отбора. Для отдельных особей мутации в основном имеют отрицательное значение, т.к. часто приводят к появлению заболеваний, снижению жизнеспособности или гибели. Индукция мутаций широко используется в селекционной работе.

В зависимости от того, в каких хромосомах локализованы гены, и характера аллеля (доминантный или рецессивный) выделяют:

· аутосомно-доминантные болезни (ахондроплазия – самая распространенная форма карликовости);

· аутосомно-рецессивные (фенилкетонурия – нарушение аминокислотного обмена);

· болезни, обусловленные генами половых хромосом (Х-хромосомы), которые также могут быть связаны с доминантными (дефект эмали зубов, полное или частичное отсутствие зубов) и рецессивными (гемофилия, дальтонизм) генами.

К-во Просмотров: 928
Бесплатно скачать Реферат: Генетика человека и её методы