Реферат: Генная инженерия 4
Ожидалось, что, когда все указанные цели будут постигнуты, исследователи определят все функции генов и разработают методы биологического и медицинского применения полученных данных.
Рассмотрев темпы ускорения работы в рамках проекта «Геном человека», руководители этого проекта объявили 23 октября 1998г., что программа будет полностью завершена гораздо раньше, чем планировалось, и сформулировали «Новые задачи проекта «Геном человека»:
- полностью завершить в декабре 1998 года работу по секвенирование генома «Круглого червя» c. Elegans (это было сделано в срок);
- закончить предварительный анализ последовательности ДНК человека к 2001 году, а полную последовательность к 2003 году;
- картировать к 2002 году геном плодовой мухи;
- начать секвенирование генома мыши с использованием методов ДНК искусственных хромосом дрожжей (завершить этот проект к 2005 году).
2.3.1. Что будет сделано после завершения анализа генома человека
Главная стратегическая задача будущего сформулирована следующим образом: изучить однонуклеотидные вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить различия между индивидуумами. Анализ таких вариаций даст возможность не только подойти к созданию индивидуальных генных портретов людей, что в частности даст возможность лечить болезни, но и определить различия между популяциями. А также выявлять географические районы повышенного риска, что поможет давать чёткие рекомендации о необходимости очистки территории от загрязнения и выявить производства, на которых есть большая опасность поражение геномов персонала.
Эта грандиозная задача рождает не одни радужные ожидания всеобщего блага, но и вполне осознанную тревогу юристов и борцов за индивидуальные права человека. Так, в частности, высказываются возражения против распространения персональной информации без решения тех, кого она касается. Один пример помогает понять эти тревоги: уже сейчас страховые компании нацелились на добывание таких сведений правдами и неправдами, они намериваются использовать данные против тех, кого они страхуют. Например, если подающий на страховку несёт потенциально болезнетворный ген, компании не хотят страховать таких людей вовсе или же пытаются заломить бешенные суммы за их страховки. Исходя из этого, конгресс США уже принял ряд законов, направленный на строгий запрет распространения генетической информации относительно отдельных людей, юристы всего мира интенсивно работают в данном направлении.
3. Предпосылки формирования генной инженерии
3.1. Открытие двойной структуры ДНК и матричного синтеза
Начальные работы американских учёных Уотсона и Крика были произведены в 1953 году. Они дали возможность развиваться генной инженерии в качестве самостоятельного раздела науки. Эти открытия заключены в следующем:
Была открыта двойная структура ДНК и постулирован её матричный синтез. Двойная спираль ДНК при репликации разделится и вдоль нити ДНК, специальные ферменты-полимеры, собирают точные копии материнской ДНК, таким образом в клетке перед делением две совершенно одинаковые молекулы ДНК, одна из которых после деления клетки попадает в дочернюю клетку. Таким образом дочерняя клетка несет ту же самую информацию, что и материнская, следовательно выполняет те же самые функции. Итак, в клетках живого организма возможен особый тип реакции – матричный синтез. Одна молекула – матрица, а вторая строится по её программе. Репликация ДНК, синтез всех видов РНК и сборка молекул белка, в соответствии со структурой иРНК – это все варианты матричного синтеза, который происходит всегда при участии нуклеиновых кислот.
По тому же самому механизму осуществляется сборка РНК, только не двух спиралей, а одной. Этот процесс получил название – транскрипция. Поток информации в клетке обеспечивает реакции матричного синтеза: репликация ДНК (необходима для передачи наследственной информации дочерним клеткам), транскрипция (синтез иРНК в ядре клетки) и трансляция (сборка белковой цепи на иРНК при помощи рибосомы).
Казалось бы, что на рубеже 70-х годов молекулярная биология достигла определённой степени завершенности: были установлены структура и механизм репликации ДНК, провозглашена «центральная догма» экспрессии гена (транскрипция и трансляция), выявлены основные аспекты регуляции активности гена. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам (включая человека) встретился с дополнительными проблемами и трудностями, и кроме того, существовавшие в то время методы не позволяли рассчитывать на получение принципиально новых результатов. Стремительный порыв в развитии молекулярной генетики в начале 70-х годов стал благодаря появлению нового экспериментального инструмента – рестриктационных эндонуклеаз. Был открыт путь для широкомасштабного получения генных продуктов (физически значимых белков) и для генетического манипулирования с различными организмами.
В прошлом генетика и медицинская генетика развивалась как относительно независимые отрасли науки, теперь многие из их разделов оказались вовлечённые в общее русло молекулярно-генетических исследований, и провести между ними грань – трудно.
Сейчас, множество ученых заняты различными работами связанные с проблемами генной инженерии – это и методы, основанные на использовании рестриктационных ферментов, анализ гена человека, методы гибридизации нуклеиновых кислот, секвенирование ДНК, сортировки хромосом при помощи цитофиурометрии и многое, многое другое.
3.2. Принципы технологий рекомбинантных ДНК
Было выделено много рестриктаз (более 150), расщепляющих ДНК в специфических сайтах. Например эндонуклеаза R1 регистрирует двухцепочную ДНК по двум сайтам таким образом, что образуются два липких конца:
¯
G-A-A-T-T-C
||| || || || || |||
C-T-T-A-A-G
Липкие концы различных молекул ДНК, расщеплённых этим ферментом, могут вступать по четырём –A-T-парам. Рестриктационные эндонуклеазы различаются по тем сайтам ДНК, которые они распознают и разрезают. Их можно использовать для различных целей. Однако наиболее распространенным этапом является их применение для амплификации специфического определения нуклеотидных последовательностей фрагментов ДНК, необходимых для ДНК
или для изучения механизмов экспрессии генов. Последняя проблема наиболее важна в практическом аспекте: гены контролирующие образование функционально активных белков теперь можно вводить в бактерии и размножать (амплифицировать). Эта процедура называется клонированием генов. Благодаря ей появилась возможность вырабатывать в больших количествах белки, которые раньше удавалось получить ничтожно мало. Эта технология основана на следующем принципе: помимо своей собственной кольцевой хромосомы, бактерии часто содержат дополнительные маленькие кольцевидные молекулы двух цепочной ДНК, называемые плазмидами.
Плазмиды реплицируются автономо и сами могут содержать гены, определяющие устойчивость бактерий к антибиотикам или контролирующие синтез веществ, например: колицинов, убивающих другие бактерии (рис.1).
Плазмидную ДНК можно выделить и расщепить подходящей рестриктазой только в одном сайте, превратив кольцевую молекулу в линейную с липкими концами.
Фрагменты любой чужеродной ДНК с такими же липкими концами (полученными после разрезания аналогичной рестриктазой) можно сшить с плазмидой ДНК с помощью лигазы.