Реферат: Геометрические построения

При вычерчивании контура детали необходимо разобраться, где имеются плавные переходы, и представить себе, где надо выполнить те или иные виды сопряжения.

Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выполнению построений.

Коробовые кривые линии.

Некоторые детали машин, инструменты для обработки металлов имеют контуры, ограниченные замкнутыми кривыми линиями, состоящими из взаимносопрягающихся дуг окружностей различных диаметров.

Коробовыми кривыми называются кривые, образованные сопряжением дуг окружностей. К таким кривым относятся овалы, овоиды, завитки.

Построение овала.

Овал - замкнутая коробовая кривая, имеющая две оси симметрии.

Последовательность построения овала по заданному размеру большой оси овала АВ производят следующим образом (рис. 20,а). Ось АВ делят на три равные части (АО1, О1О2, О2В). Радиусом, равным О1О2, из точек деления О1 и О2 проводят окружности, пересекающиеся в точках m и n .

Соединив точки n и m с точками О1 и О2, получают прямые n О1, n О2, m О1, m О2, которые продолжают до пересечения с окружностями. Полученные точки 1,2,3, и 4 являются точками сопряжения дуг. Из точек m и n , как из центров, радиусом R 1, равным n 2 и m 3, проводят верхнюю дугу 12 и нижнюю дугу 34.

Построение овала по двум заданным осям AB и CD приведено на рис. 20,б.

Проводят оси АВ и С D . Из точки их пересечения радиусом ОС(половина малой оси овала) проводят дугу до пересечения с большой осью овала АВ в точке N . Точку А соединяют прямой с точкой С и на ней от точки С откладывают отрезок NB , получают точку N . В середине отрезка AN 1 восставляют перпендикуляр и продолжают его до пересечения с большой и малой осями овала в точках О1 и n . Расстояние ОО1 откладывают по большой оси овала вправо от точки О, а расстояние on от точки О откладывают по малой оси овала вверх, получают точки n1 и О2. Точки n и n1 являются центрами верхней дуги 12 и нижней дуги 34 овала, а точки О1 и О2-центрами дуг 13 и 24. Получают искомый овал.

Построение овоида.

Овоид - замкнутая коробовая кривая,имеющая только одну ось симметрии. Радиусы R и R1 дуг окружностей, центры которых лежат на оси симметрии овоида, не равны друг другу(рис. 20,в).

Построение овоида по заданной оси АВ выполняется в следующей последовательности (рис. 20,в).

Проводят окружность диаметром, равным оси АВ овоида. Из точек А и В через точку О1(точка пересечения окружности радиуса R с осью симметрии) проводят прямые. Из точек А и В, как из центров, радиусом R2 , равным оси А B, проводят дуги An и Bm , а из центра О1 радиусом R1 проводят малую дугу овоида nm .

Построение завитков.

Завиток - плоская спиральная кривая, вычерчиваемая циркулем путем сопряжения дуг окружностей.

Построение завитков выполняют при вычерчивании таких деталей, как пружины и спиральные направляющие.

Построение завитков выполняется из двух, трех и более центров и зависит от формы и размеров «глазка», который может быть окружностью, правильным треугольником, шестиугольником и т.п. Последовательность построения завитка следующая.

Вычерчивается в тонких линиях контур «глазка», например окружность с диаметром О1О2(рис. 21). Из точек О1 и О2, как из центров, проводят две сопряженные между собой полуокружности. Верхняя полуокружность О21 из центра О1, нижняя полуокружность 12 из центра О2. Получается искомый завиток.

Лекальные кривые.

Вычерчивание кривых по лекалу.

При выполнении чертежей часто приходится прибегать к вычерчиванию кривых, состоящих из ряда сопряженных частей, которые невозможно провести циркулем. Такие кривые строят обычно по ряду принадлежащих им точек, которые затем соединяют плавной линией сначала от руки карандашом, а затем обводят при помощи лекал.

Рассматриваемые лекальные кривые располагаются в одной плоскости и называются поэтому плоскими.

Лекальные кривые широко применяются в машиностроении для очертания различных технических деталей, например: кронштейнов, ребер жесткости, кулачков, зубчатых колес, фасонного инструмента и т.п.

К лекальным кривым относят эллипс, параболу, гиперболу, циклоиду, эпициклоиду, эвольвенту, синусоиду, спираль Архимеда и др.

Ниже рассмотрены способы построения кривых, наиболее часто встречающихся в технике.

Построение эллипса.

Эллипс - замкнутая плоская кривая, сумма расстояний каждой точки которой до двух данных точек(фокусов), лежащих на большой оси, есть величина постоянная и равная длине большой оси.

Широко применяемый в технике способ построения эллипса по большой(АВ) и малой(С D ) осям представлен на рис. 22.

Проводят две перпендикулярные осевые линии. Затем от центра О откладывают вверх и вниз по вертикальной оси отрезки, равные длине малой полуоси, а влево и вправо по горизонтальной оси-отрезки, равные длине большой полуоси.

Из центра О радиусами ОА и ОС проводят две концентрические окружности и ряд лучей-диаметров. Из точек пересечения лучей с окружностями проводят линии, параллельные осям эллипса, до взаимного пересечения в точках, принадлежащих эллипсу. Полученные точки соединяют от руки и обводят по лекалу.

Построение параболы.

Парабола - плоская кривая, каждая точка которой равноудалена от директрисы DD 1 прямой, перпендикулярной к оси симметрии параболы, и от фокуса F -точки, расположенной на оси симметрии параболы(рис. 23).

Расстояние KF между директрисой и фокусом называется параметром p параболы. Точка О, лежащая на оси симметрии, называется вершиной параболы и делит параметр p пополам.

Для построения параболы по заданной величине параметра p проводят ось симметрии параболы(на рисунке вертикально) и откладывают отрезок KF=p . Через точку K перпендикулярно оси симметрии проводят директрису DD 1. Отрезок KF делят пополам и получают вершину О параболы. От вершины О вниз на оси симметрии намечают ряд произвольных точек I-IV с постепенно увеличивающимся расстоянием между ними. Через эти точки проводят вспомогательные прямые, перпендикулярные оси симметрии. На вспомогательных прямых из фокуса F делают засечки радиусом, равным расстоянию от прямой до директрисы. Например, из точки F на вспомогательной прямой, проходящей через точки V , делают засечку дугой R 1 =KV ; полученная точка 5 принадлежит параболе.

В станкостроении и других отраслях машиностроения часто применяются детали, контурные очертания которых выполнены по параболе, например, стойка и рукав радиально-сверлильного станка.

Построение синусоиды.

К-во Просмотров: 1479
Бесплатно скачать Реферат: Геометрические построения