БИЛЕТ 12 ОПРЕДЕЛЕНИЕ: Две пересекающиеся плоскости называются перпендикулярными, если угол м/у ними равен 900 .
ТЕОРЕМА: Если одна из двух плоскостей проходит ч/з прямую,перпендикулярную к др.
плоскости, то такие плоскости перпендикулярны.
Док-во: Рассмотрим плоскости a и b такие, что плоскость a проходит ч/з прямую АВ, перпендикулярную к плоскости b и пересекающуюся с ней в точке А. Докажем, что a^b. Плоскости a и b пересекаются по прямой АС, причем АВ^АС, Т.к. по усл. АВ^b, и, значит, прямая АВ^ к любой прямой, лежащей в плоскости b.
Проведем в плоскости b прямую АD,^АС. Тогда ÐBAD - линейный угол двугранного угла, образованного при пересечении плоскостей a и b. Но ÐBAD=900 (т.к. AB^b). След-но, угол м/у плоскостями a и b равен 900 , т.е. a^b. Ч.Т.Д.
Sбок =P*a (а - бок. ребро, Р-периметр) |