Реферат: «Гравитационный парадокс» и его решение

Внесем внутрь полости еще одну массу, имеющую форму фигуры, выделенной на рис. 5в синим цветом.

Данная фигура заполняет внутренний объем полости за исключением внесенного шара и его зеркального отражения. Плотность вещества, заполняющего второе тело, также равна плотности вещества, заполняющего окружающее пространство. Отметим, что расположение вещества, заполняющего второе тело, симметрично относительно пробной массы m. Поэтому силы тяготения, создаваемые вторым телом, взаимно уравновешены.

Совместим рис. 5б и рис. 5в. Получим рис. 6а.

Рис. 6. Расположение вещества, уравновешивающего силы тяготения:

а) пробное тело расположено на краю полости, б) вещество, отмеченное серым цветом, имеет одинаковую плотность

На рис. 6б все вещество, имеющее одинаковую плотность, отмечено серым цветом. Граница вещества выделена жирной линией, а условные линии построения сохранены в виде пунктиров.

Пробное тело m расположено на краю только что построенной полости, и на него в данном случае действует сила тяготения (1), созданная малым шаром радиуса r. Сравнение построенной полости с любой другой полостью приводит к выводу, что изменение действия силы на пробную массу может быть вызвано только изменением размеров и плотности окружающего вещества.

Вывод: всякая полость, вне зависимости от природы возникновения, создает силы тяготения в соответствии с формулой (1).

В корректности проведенного доказательства можно убедиться самостоятельно, проделав аналогичные действия с любой другой полостью. Обратим внимание на тот факт, что сила тяготения внутри полости создается не самой полостью (то есть пустотой), а окружающим полость веществом, которое при наличии полости расположено асимметрично по отношению к пробной массе.

Впрочем, приведенное доказательство наличия неуравновешенных сил тяготения внутри сферически-симметричной полости не единственное. Приведем вторую схему рассуждений, которая приводит к тому же результату. Те, кого убедило изложенное, могут перейти к анализу причин ошибочного доказательства отсутствия сил тяготения внутри сферически-симметричной полости.

Второе доказательство наличия неуравновешенных сил тяготения внутри сферически-симметричной полости

На рис. 7а показаны две полости равного радиуса R, находящиеся в однородном изотропном пространстве. Плотность вещества, равномерно заполняющего пространство, примем равным ρ. Плотность вещества внутри каждой полости первоначально примем равной нулю.

Рис. 7. Две полости в однородном изотропном пространстве

Совместим начало декартовой системы координат xyz с центром пробной массы m (см. рис. 7б).

Согласно начальным условиям, расположение вещества, находящегося за пределами обоих полостей, симметрично относительно начала координат. Силы тяготения, создаваемые веществом вдоль осей координат, можно описать уравнением:

[Fx , Fy , Fz ] = [–Fx , –Fy , –Fz ].

Наличие неуравновешенных сил тяготения в произвольно выбранном направлении, не совпадающем с осями координат, предполагает несколько проекций одной силы, что нарушает условие симметрии. В случае зеркально-симметричного расположения двух полостей относительно пробного тела m, сила тяготения в начале координат отсутствует при любом другом положении двух полостей (см. рис. 8).

Рис. 8. Отсутствие сил тяготения при произвольном положении полостей

Единственным условием отсутствия сил тяготения является сохранение симметрии фигуры относительно осей x, y, z.

Заполним часть пространства внутри каждой фигуры таким образом, чтобы оставшаяся часть приобрела форму сферически-симметричной полости (выделена красным цветом на рис. 9).

Рис. 9. Внесение дополнительной массы

Внесение дополнительной массы, расположенной асимметрично к положению пробного тела, вызовет появление силы тяготения, которая направлена к центру масс дополнительно внесенного вещества. До внесения дополнительного вещества равнодействующая сил тяготения на пробное тело была равна нулю. Таким образом, сила тяготения, обусловленная внесением дополнительного вещества, будет единственной силой, действующей на пробную массу.

В качестве итога сформулируем общее правило нахождения сил тяготения внутри сферически-симметричной полости.

Для нахождения сил тяготения, создаваемых асимметрично расположенным веществом, необходимы две операции.

Первая: необходимо построить сферу с центром, совпадающим с положением точки, для которой мы рассчитываем силы тяготения, и радиусом, равным расстоянию до крайней точки асимметрично расположенного вещества или какой-либо другой неоднородности так, чтобы она целиком оказалась внутри сферы.

К-во Просмотров: 174
Бесплатно скачать Реферат: «Гравитационный парадокс» и его решение