Реферат: Ядерный магнитный резонанс (ЯМР)

2.1.Классическое описание условий магнитного резонанса.

Вращающийся заряд q можно рассматривать как кольцевой ток, поэтому он ведет себя как магнитный диполь, величина момента равна:

m=iS, (2.1)

где i-сила эквивалентного тока;

S - площадь, охватываемая кольцевым током.

В соответствии с понятием силы тока имеем:

i=qn,

где n=v/2pr-число оборотов заряда q в секунду;

v-линейная скорость;

r-радиус окружности, по которой движется заряд.

Если перейти к электромагнитным единицам (т.е. разделить заряд на с) и учесть, что S=pr2 , то выражение (2.1) можно переписать в следующем виде:

m=qvr/2c. (2.2)

Вращающаяся частица с массой М обладает угловым моментом (или моментом импульса)L, представляющим собой вектор, направленный вдоль оси вращения и имеющий величину Mvr. Здесь L=[rp]=[rv], в данном случае r^v. И заряд, и масса участвуют в одном и том же вращении (вращательном движении), поэтому вектор магнитного момента коллинеарен вектору углового момента, с которым он связан соотношением

=(q/2Mc)L=gL, (2.3)

где g=q/2Mc-гиромагнитное отношение, являющееся индивидуальной характеристикой частицы (ядра).

Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах.

Выражение 2.3 позволяет записать классическое уравнение движения магнитного момента в векторной форме следующим образом:

d/dt=g[], (2.4)

где –напряженность внешнего магнитного поля.

Если в отсутствии магнитного поля вращать вектор с угловой скоростью , то, в соответствии с законом Ньютона для вращательного движения, выражение для d/dt будет иметь вид:

d/dt=[]. (2.5)

Из сопоставления выражений 2.4 и 2.5 следует, что действие магнитного поля в точности эквивалентно вращению момента с угловой скоростью =-g (2.6), т.е. ω=gH, или n=gH/2p (2.7), здесь n [Гц] ,H [Э] (уместно вспомнить, что [ab]=-[ba]).

Таким образом, в постоянном магнитном поле вектор магнитного момента будет прецессировать вокруг направления вектора с постоянной угловой скоростью -g независимо от направления вектора , т.е. от угла между осью вращения частицы и направлением поля (рис.1).Угловой скоростью такой прецессии называют ларморовой частотой, а выражение 2.6 – формулой Лармора .

Если перейти к системе координат, вращающейся равномерно с угловой скоростью -g, то при отсутствии других магнитных полей вектор магнитного момента в этой системе координат будет оставаться неизменным по величине и направлению. Другими словами, во вращающейся системе координат постоянное магнитное поле как будто отсутствует.

Рис.1. Прецессия магнитного момента в магнитном поле

Допустим теперь, что кроме поля введено другое, более слабое поле 1 , постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению (рис.1). Если скорость вращения поля 1 не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [1 ], который стремится повернуть ядерный момент в плоскость, перпендикулярную . Если направление 1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента.

К-во Просмотров: 781
Бесплатно скачать Реферат: Ядерный магнитный резонанс (ЯМР)