Реферат: ЯМР как аналитический метод

В этом случае для СН3 -группы этанола получим мультиплет с отношением интенсивностей 1:2:1.

Ситуация существенно усложняется, если не выполняется приближение слабой связи. На рис. 3 показано изменение вида спектра для случая простой спиновой системы АХ, состоящей из двух взаимодействующих ядер А и

Xсо спинами I= 1/2, при условии, что константа косвенного спин-спинового взаимодействия Jax остается неизменной, а разность значений химических сдвигов уменьшается. В пределе достаточно сильного

уменьшения разности химических сдвигов реализуется приближение сильной связи. В соответствии с общепринятой номенклатурой использование букв, следующих одна за другой в алфавитном порядке, для обозначения спиновой системы означает наличие сильной связи, например, ABвместо АХ, соответствующего слабой связи. Если химический сдвиг, как обычно, измерять в м.д., то величина химического сдвига не зависит от напряженности магнитного поля. Именно на этом основано использование такой шкалы. Однако если химический сдвиг измерять в Гц, то эта величина возрастает с увеличением напряженности внешнего магнитного поля. Разность химических сдвигов, выраженная в единицах частоты, возрастает с увеличением напряженности магнитного поля, а константа спин-спинового взаимодействия не зависит от этой напряженности. Следовательно, при увеличении поля мы от приближения сильной связи переходим к приближению слабой связи. Следует отметить, однако, что именно зависимость химического сдвига от поля осложняет сравнение спектров, снятых при различных значениях напряженности магнитного поля.

4. Константы скалярного взаимодействия и структура молекул

Косвенное взаимодействие двух ядерных спинов осуществляется через электроны связи. В первом приближении можно отметить, что величина этого взаимодействия убывает с ростом числа связей между ядрами. Из анализа мультиплетности резонансных линий можно попытаться построить альтернативную структуру для неизвестного вещества и даже выбрать наиболее вероятную пространственную структуру.

Строго говоря, константа спин-спинового взаимодействия / определяется не только числом связей между взаимодействующими ядрами, но также зависит от особенностей пространственного распределения электронов. Поскольку пространственное распределение электронов в свою очередь зависит от диэдрального углат.е. угла на который повернуты друг относительно друга две соседние группы ядерных спинов, связанные между собой косвенным спин-спиновым взаимодействием, то и константа / зависит от угла Вследствие этого даже если число связей между взаимодействующими спинами невелико, константа косвенного спин-спинового взаимодействия в ряде случаев уменьшается до нуля. В дальнейшем убедимся, что наличие зависимости константы / от угладает возможность решать достаточно сложные задачи структурной химии. Это, в частности, позволило определить структуру такой сложной молекулы, как протеин.

5. Определение партнера по взаимодействию

Информация о химической структуре молекулы может быть получена после того, как определено, какие из ядер данной молекулы связаны между собой скалярным спин-спиновым взаимодействием. Величина этого взаимодействия позволяет сделать вывод о том, какие из ядер являются соседними в данной химической структуре.

В рассмотренном ранее простом спектре этанола видно, что CH2 - и СНз-группы соседствуют одна с другой. В более сложном спектре ЯМР, состоящем из большого числа линий, достаточно сложно сделать вывод о том, какие из взаимодействий вызывают наблюдаемое расщепление спектральных линий. В этом случае стремятся упростить спектр, применяя метод двойного резонанса или развязку. Если в процессе детектирования на систему взаимодействующих спинов подается еще одно РЧ поле, воздействующее селективно на резонансной частоте одного из ядерных спинов, например А, то мультиплетная структура резонансной линии, соответствующей спину ядра X, при условии, что расщепление этой линии обусловлено спин-спиновой связью между спинами А и X, исчезает. Для этанола развязка на частоте, соответствующей метиленовым протонам, приводит к исчезновению расщепления в метильной группе. На рис. 2.5 приведена схема проведения этого эксперимента. Одновременно с возбуждающим импульсом дополнительно подается импульс второго РЧ поля B2 , воздействующего на частотев течение сбора данных. Для эффективной развязки величина поля JS2 должна удовлетворять условиюОчевидно, что напряженность поля развязки должна превышать напряженность поля, создаваемого возбужденным спином. В гетероядерном случае при проведении этого эксперимента не возникает каких-либо дополнительных проблем, поскольку разность значений частот возбуждающего поля и поля развязки

достаточно велика. В гомоядерном случае при непрерывном облучении полем JS2 возникают сложности с регистрацией слабого сигнала ЯМР, поскольку трудно избежать воздействия поля развязки на приемник, настроенный на частоту детектируемого сигнала. Поэтому спиновую систему облучают второй частотой не непрерывно, а в импульсном режиме, причем это облучение синхронизировано со сбором данных. Во время действия импульса канал приемника остается закрытым, сбор данных осуществляется во время интервала между импульсами, поэтому, во время сбора данных значительных искажений не возникает. Несмотря на то, что облучение проводится полем Ti2 с напряженностью, усредненной по всему циклу, приведенное выше условие выполняется.

В настоящее время описанные выше эксперименты с развязкой во многом утратили свой смысл. Как увидим в дальнейшем, эту же информацию для всех партнеров по спин-спиновому взаимодействию можно получить из одного эксперимента – двумерного ЯМР-эксперимента, требующего, однако, значительных затрат времени. Относительно больших молекул, для анализа структуры которых необходимо определить большое число констант спин-спинового взаимодействия, такая затрата времени вполне оправдана и, безусловно, компенсируется получаемыми результатами. Отметим, что существует большое число вариантов экспериментов с развязкой, которые могут дать более полную информацию, однако используются при решении специальных задач. Среди них можно отметить «спин-тиклинг». Этот метод не упрощает спектр, а наоборот, приводит к возникновению новых линий – так называемых артефактов, которые появляются в том случае, если при развязке мощность РЧ поля выбирается слишком малой.

В гетероядерном случае такие эксперименты часто направлены не на упрощение спектров, а на получение информации о косвенном спин-спиновом взаимодействии, поскольку развязка приводит к полному исчезновению мультиплетной структуры линий. С этой целью поле развязки воздействует не селективно, на определенной частоте, а в полосе частот. Такой вариант развязки называется широкополосной развязкой. Данный метод можно реализовать просто с помощью быстрой модуляции высокой частотой, подобно тому, как это проводится в стандартном методе шумовой развязки. Более эффективны современные импульсные методы, которые позволяют проводить развязку в достаточно широкой области частот и непосредственно учитывают свойства ядерных спинов.

Однако при использовании широкополосной развязки возникает проблема, состоящая в том, что образец подвергается облучению дополнительным полем в течение достаточно длительного времени. Это особенно сильно сказывается на водных растворах и растворах электролитов, которые достаточно сильно поглощают РЧ излучение, что приводит к разогреву образца. Изменение температуры сказывается на виде спектра in-vitro, а для чувствительных к изменению температуры биологических молекул может приводить к необратимой денатурации. При проведении исследований in-vivo это может привести к потенциально более вредному воздействию, а именно, разрушающему перегреву тканей.

6. Применение метода ЯМР для определения концентраций

Задача определения концентраций с помощью метода ЯМР в идеальном случае представляется достаточно простой. Так как площадь под резонансной линией пропорциональна числу ядерных спинов, то она пропорциональна также числу соответствующих ядер. При условии, что объем образца остается неизменным, число ядер пропорционально концентрации молекул, содержащих эти ядра. Это позволяет по величине площади определить значение относительных концентраций, а при соответствующей калибровке – значение абсолютных концентраций.

Рассмотрим вновь рис. Значения интегралов под отдельными резонансными линиями очевидно различаются. Соотношение площадей под сигналами, соответствующими гидроксильной, метиленовой и метильной группам, равно числу протонов в этих группах 1:2:3. Подобные рассуждения справедливы и при определении в смеси веществ относительных концентраций присутствующих в них компонентов. При этом здесь отсутствует необходимость в отнесении всех резонансных линий, необходимо лишь установить принадлежность хотя бы одной резонансной линии к соответствующей молекуле при условии, что в спектре отсутствует перекрывание спектральных линий.

Несмотря на относительную простоту такого подхода, существует, однако, ряд факторов, ограничивающих точность метода. Большинство источников ошибок можно достаточно просто исключить. Поскольку методы определения концентраций играют большую роль, в частности, в спектроскопии in-vivo, более подробно обсудим возможности устранения ошибок в таких экспериментах.

Эффекты насыщения могут существенно влиять на интенсивность резонансных линий. Так как значения времен продольной релаксации для различных групп в молекуле могут варьироваться в широких пределах, то возможно настолько сильное насыщение, что в результате будет наблюдаться полное исчезновение некоторых резонансных линий. Это происходит в том случае, если скорость повторения и соответственно длительность импульса, определяющая угол отклонения вектора намагниченности, выбираются слишком большими. Если же в образце присутствуют ядра с различными значениями времен релаксации и нужно провести измерение относительной интенсивности линий с достаточно высокой точностью, то необходимо построить эксперимент таким образом, чтобы соблюдался баланс между максимальной чувствительностью и правильным значением интегральной интенсивности резонансных линий. Максимальная чувствительность определяется углом Эрнста, а точное определение площади под резонансным сигналом достигается тогда, когда длительность интервала между импульсами выбирается из следующих соображений: спин ядра с наибольшим значением времени релаксации T^max должен полностью прийти к состоянию термодинамического равновесия, прежде чем на систему воздействует следующий импульс. Для достижения этого условия необходимо, чтобы интервал времени между импульсными воздействиями на спиновую систему Tr в несколько раз превышал максимальное из значений времен спин-решеточной релаксации Timax : например, Tr = Srjmax .

Так как возбуждающий импульс характеризуется конечной шириной, то соответствующий спектр не для всех частот будет равноинтенсивным. Если длительность импульса слишком велика, то не все резонансные линии возбуждаются равномерно, что приведет, очевидно, к изменению их интенсивности, которая определяется разностью значений резонансной и опорной частот.

Для улучшения отношения сигнал/шум РЧ сигнал подвергается фильтрации с помощью аналогового фильтра. Такой фильтр позволяет пропускать только интересующую нас область частот. Так как частотная характеристика для аналогового фильтра не является строго прямоугольной, то сигналы по краям спектра несколько ослаблены.

При использовании аналого-цифрового преобразователя сигнал, принимающий в аналоговом представлении непрерывный ряд значений, преобразуется в ряд целочисленных значений. В этом случае определение площади под резонансной линией будет неточным, если на частотной оси отсутствует достаточно число точек для характеристики резонансной линии. Точное измерение концентрации также невозможно в случае, если цифровая фильтрация загрубляет данные о площади под резонансной линией, слишком большой шум или перекрывание с другими сигналами затрудняет процесс интегрирования. Если входной сигнал, поступающий на АЦП, является очень слабым, то осуществляющая возможность проведения преобразования позволяет получить лишь достаточно грубую информацию, так как в нашем распоряжении имеется небольшое число значений для описания данного сигнала. В предельном случае имеется только одно значение – нуль. При этом интеграл определяется с большой неточностью. Неточность можно устранить, если усилить сигнал настолько, чтобы можно было располагать достаточным числом значений. Определенные трудности возникают тогда, когда одновременно необходимо проинтегрировать очень слабый и очень сильный сигналы. В этом случае максимальное усиление входного сигнала определяется динамической областью АЦП. В Фурье-спектроскопии полный сигнал должен быть зарегистрирован без искажений, так как каждая точка, содержащаяся в спаде свободной индукции, может оказывать влияние на весь спектр. Таким образом, даже самый большой сигнал должен попадать в область значений АЦП. Для современных спектрометров с высоким значением статического магнитного поля и соответственно высоким значением рабочей частоты, как правило, используются 12- и 16‑разрядные АЦП, т.е. наибольший сигнал может превышать не более чем в 4096 = 2* раз и соответственно не более чем в 65536=2 6 раз наименьший сигнал для того, чтобы можно было зарегистрировать эти сигналы одновременно. Несмотря на то что приведенные величины весьма велики, такая ситуация встречается на практике нередко. Если, например, нужно зарегистрировать спектр вещества миллимолярной концентрации в воде, то сигнал воды примерно в 1 10000 раз интенсивнее сигнала вещества.

Если учесть все перечисленные возможности возникновения ошибок, то при соответствующих условиях можно определять концентрацию с точностью до нескольких процентов. Если используем внутренний стандарт и добавляем строго определенное его количество, то можем достаточно точно определить значение абсолютной концентрации. Если же условия проведения эксперимента не позволяют использовать внутренний стандарт для определения интенсивности, то это означает, например, в спектроскопии in-vivo, что при нахождении абсолютных концентраций всегда допускается некоторая неточность. В этом случае интенсивность резонансных линий определяется многими внешними факторами, в частности, точным расположением образца в приемной катушке и точностью настройки приемно-передающего тракта. Точность этих измерений всегда должна подвергаться критической оценке и сопоставлениям.

7. Подавление интенсивного сигнала растворителя

Так как концентрация растворителя всегда превышает концентрацию растворенного вещества, то проблема детектирования слабых сигналов на фоне интенсивного сигнала растворителя возникает достаточно часто. Простейший метод, позволяющий обойти эту проблему, состоит в том, что выбирается растворитель, не содержащий ядер, положение резонансных линий которых совпадает с сигналами исследуемого вещества. Так, измерение спектров на ядрах 31 P не вызывает затруднений, поскольку большинство из используемых растворителей не содержит атомов фосфора. Однако большинство растворителей содержит протоны, так что для них наблюдаются сигналы в спектрах ЯМР 1 H. Данную трудность можно обойти, используя дейтерированные растворители, однако это также далеко не всегда применимо. Наиболее часто используемый растворитель – дейтерированная вода. В настоящее время налажен промышленный выпуск полностью дейтерированных растворителей, они нашли широкое применение. Если же по условиям проведения эксперимента необходимо использовать протонсодержащие растворители или сигнал остаточных протонов достаточно интенсивный, то этот сигнал необходимо подавлять с использованием специальных импульсных методов. Разнообразные методы, разработанные с этой целью, можно разделить на две категории: либо в подготовительном периоде эксперимента проводится селективное воздействие на спиновую систему на частоте, соответствующей сигналу растворителя, таким образом, чтобы в дальнейшем при неселективном воздействии интенсивность сигнала от растворителя была существенно ослаблена, либо возбуждается весь спектр, за исключением той области, в которой расположены сигналы растворителя. Наиболее эффективен подход, в котором используется комбинация этих методов.

Самым распространенным является метод селективного предварительного насыщения сигнала растворителя, в котором используется слабый импульс большой длительности. Следующий за ним неселективный импульс возбуждает весь спектр, однако за счет предварительного насыщения интенсивность пика растворителя существенно ослабляется в 100–1000 раз. Вторую группу составляют методы, основанные на инвертировании сигнала с помощью 180°-ного импульса и возбуждении спустя время Xполного спектра, причем длительность этого интервала выбирается такой, чтобы к моменту сбора данных намагниченность от сигнала растворителя была равна нулю.

К-во Просмотров: 275
Бесплатно скачать Реферат: ЯМР как аналитический метод