Реферат: Имитационное биомеханическое моделирование как метод изучения двигательных действий человека
- силы реакции приложены в центрах вращения в суставах;
- моменты управления являются функциями сил межзвенных реакций, углов, угловых скоростей;
- силы сопротивления внешней среды известны.
Остановимся несколько подробнее на некоторых предположениях, сделанных выше. Утверждение о том, что все сегменты тела человека абсолютно твердые, вполне корректно для таких сегментов, как плечо, предплечье, бедро и голень. Для стопы предположение об абсолютной твердости является вынужденным [15]. Идеальные цилиндрические шарниры не отражают анатомии суставов, однако удобны для математического моделирования.
Предположение о наличии движителей в суставах в виде мышечных моментов позволяет избежать необходимости включения в модель плеч тяги мышц. Несмотря на спорность многих предположений, применяемых при построении антропоморфных моделей, эти модели работают и дают исследователям необходимую информацию о кинематике и динамике локомоций человека [2].
Модели управления антропоморфного механизма. После создания антропоморфной модели необходимо выбрать систему управления звеньями тела. Наиболее простой вид управления представляют приводы, создающие моменты в шарнирах [31]. Каждый привод создает момент относительно оси вращения в суставе. Схема управления приводами основана на реципрокном торможении антагонистов: момент создают только мышцы-агонисты, момент антагонистов равен нулю. Задача с приводным управлением при известных силах реакции опоры всегда однозначно разрешима.
В том случае, если в качестве движителей рассматриваются мышцы, число неизвестных много больше степеней свободы антропоморфного механизма. Так, управление верхней конечностью с 7 обобщенными координатами в модели [34] осуществляется 32 мышцами. Движения в трех суставах нижней конечности осуществляются как минимум 9 мышцами [40, 17]. Для нахождения решения в таких моделях, когда число неизвестных больше числа уравнений, необходимо создать алгоритм управления мышцами, отличный от приводного. Поскольку координационные механизмы преодоления мышечной избыточности ясны не до конца, исследователи придумывают схемы управления двигательными действиями на основе известных математических алгоритмов. Наиболее часто встречающимся математическим способом преодоления мышечной избыточности является метод минимизации целевой функции. В биомеханических исследованиях целевые функции чаще всего отражают следующие физиологические параметры: минимумы метаболической энергии, механической работы, сил тяги мышц и т.п. Предлагаемые критерии поверхностно отражают механизмы управления ЦНС мышцами, однако для некоторых типов локомоций принцип минимума целевой функции дает результаты, близкие к экспериментально измеренным силам тяги мышц [27, 28, 31].
Механизмы управления мышечной активностью и скоростно-силовыми характеристиками мышц подробно исследованы в односуставных движениях [32, 21] и локомоциях, совершаемых преимущественно в одной плоскости, таких, как ходьба, вертикальная стойка, прыжки вверх.
Силы тяги мышц, мышечные синергии в пространственных локомоциях, к которым относится большинство спортивных движений, изучены недостаточно.
По нашему мнению, метод имитационного моделирования является подходящим инструментом, способным исследовать механизм управления в пространственных движениях человека. С помощью этого метода можно количественно оценить как внутреннюю (координационную) структуру двигательных действий (через амплитуду и знаки мышечных моментов), так и внешние проявления мышечной активности - скорости и силы в центрах масс сегментов [4].
Исследование биологических систем методом имитационного моделирования. Имитационное моделирование проводится с целью изучения сложных биологических систем. Например, энергообеспечение мышечной деятельности [20], мышечное сокращение [1]. Эти модели имеют большую размерность, и не до конца ясны и формализованы механизмы изучаемых процессов. Такие модели могут состоять как из логических (неформализованных), вероятностных, так и математических блоков.
Термин "имитация" означает такой подход к изучению систем, когда информация о функционировании этой системы и ее частей получается за счет многократного проигрывания на ЭВМ модели системы. Результатами многократного повторения модели биологического объекта с различными входными физиолого-анатомическими параметрами, формами математической связи между составляющими биологической системы являются:
а) оптимальный вариант управления системой;
б) наилучший режим функционирования;
в) рациональный способ ее применения [20, 12];
г) корригируется поведение реальной системы (например, тактические действия спортсмена на дистанции [20] и
д) делается предпочтительный выбор техники движений [6, 41].
Поскольку при моделировании биологических систем часть компонентов неизвестны или известны неточно, имитационная модель, описывающая биологический процесс, является всего лишь его копией. В зависимости от точности модельных блоков результаты компьютерного перебора модельных вариантов позволяют: а) рассчитать искомые параметры или б) определить тенденции в поведении биологической системы, в том числе и антропоморфного механизма.
Изменение некоторых входных данных антропоморфной модели влияет на силы, моменты, мощности в суставах, механическую работу, поэтому исследователь может определить, каким образом каждый параметр влияет на конечный результат. Такая постановка имитационной задачи сводится к ответу на вопрос: "Что, если?".
Имитационное моделирование в биомеханике . Метод имитационного моделирования применительно к биомеханическим задачам позволяет, не регистрируя кинематику и динамику двигательного действия, только по кинетограмме, созданной на компьютере:
а) оценить [6, 41] максимальные усилия мышц;
б) определить суставы, на которые больше всего падает нагрузка с целью предотвращения травм;
в) рассчитать механические энергозатраты и разработать эффективные варианты двигательных действий и т. п.
При построении имитационных антропоморфных компьютерных моделей исходили из того, что движение человека можно представить в виде определенной последовательности фаз, повторяющихся двигательных циклов. В большинстве локомоций человека кинематические параметры движения достаточно хорошо изучены. Известны временная длительность фаз, средняя скорость звеньев в фазах, углы и угловая скорость в суставах в начале и конце каждой фазы. Так, нормальная ходьба состоит из следующих фаз: переднего толчка, заднего толчка и маха. В беге на коньках фазовый состав движения следующий: фазы свободного проката (I фаза), одноопорного отталкивания (II фаза) и двухопорного отталкивания (III фаза) [18]. Рассмотрим задачу имитационного моделирования локомоций человека на примере бега на коньках.
Задание кинематических характеристик локомоций . При моделировании движения человека с помощью ЭВМ разработали следующий алгоритм:
а) модели тела человека придавали форму, соответствующую началу/окончанию фаз, например для бега на коньках такие положения, как "начало свободного проката", "начало одноопорного" и "окончание двухопорного положения" (рис. 1), назвали их "базисные кинематические положения";
б) задавали время между фазами и среднюю скорость полюса модели (тазобедренного сустава) в фазах;
в) в качестве интерполирующей функции - математической зависимости, дающей кинематическую последовательность между базисными точками, применяли сплайны (кубический сглаживающий или интерполяционный). Использование сплайна позволяет получить кинетограмму движения с любым временным интервалом между точками.
При выборе математической зависимости, связывающей время и кинематику движения, необходимо учитывать: