Реферат: Имитационные модели
Введение
Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.
Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.
Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.
1. Понятие имитационного моделирования
Имитационное моделирование – это метод исследования, заключающийся в имитации на ЭВМ с помощью комплекса программ процесса функционирования системы или отдельных ее частей и элементов. Сущность метода имитационного моделирования заключается в разработке таких алгоритмов и программ, которые имитируют поведение системы, ее свойства и характеристики в необходимом для исследования системы составе, объеме и области изменения ее параметров.
Принципиальные возможности метода весьма велики, он позволяет при необходимости исследовать системы любой сложности и назначения с любой степенью детализации. Ограничениями являются лишь мощность используемой ЭВМ и трудоемкость подготовки сложного комплекса программ.
В отличие от математических моделей, представляющих собой аналитические зависимости, которые можно исследовать с помощью достаточно мощного математического аппарата, имитационные модели, как правило, позволяют проводить на них лишь одиночные испытания, аналогично однократному эксперименту на реальном объекте. Поэтому для более полного исследования и получения необходимых зависимостей между параметрами требуются многократные испытания модели, число и продолжительность которых во многом определяются возможностями используемой ЭВМ, а также свойствами самой модели.
Использование имитационных моделей оправдано в тех случаях, когда возможности методов исследования системы с помощью аналитических моделей ограничены, а натурные эксперименты по тем или иным причинам нежелательны или невозможны.
Даже в тех случаях, когда создание аналитической модели для исследования конкретной системы в принципе возможно, имитационное моделирование может оказаться предпочтительным по затратам времени ЭВМ и исследователя на проведение исследования. Для многих задач, возникающих при создании и функционировании АСУ, имитационное моделирование иногда оказывается единственным практически реализуемым методом исследования. Этим в значительной степени объясняется непрерывно возрастающий интерес к имитационному моделированию и расширение класса задач, для решения которых оно применяется.
Методы имитационного моделирования развиваются и используются в основном в трех направлениях: разработка типовых методов и приемов создания имитационных моделей; исследование степени подобия имитационных моделей реальным системам; создание средств автоматизации программирования, ориентированных на создание комплексов программ для имитационных моделей.
Различают два подкласса систем, ориентированных на системное и логическое моделирование. К подклассу системного моделирования относят системы с хорошо развитыми общеалгоритмическими средствами; с широким набором средств описания параллельно выполняемых действий, временных последовательностей выполнения процессов; с возможностями сбора и обработки статистического материала. В таких системах используют специальные языки программирования и моделирования – СИМУЛА, СИМСКРИПТ, GPSS и др. Первые два из этих языков являются подмножествами процедурно-ориентированных языков программирования типа ФОРТРАН, ПЛ/1, расширенными средствами динамических структур данных, операторами управления квазипараллельными процессами, специальными средствами сбора статистики и обработки списков. Эти дополнительные возможности позволяют вести статистические исследования моделей, поэтому такие системы иногда называют системами статистического моделирования.
К подклассу логического моделирования относят системы, позволяющие в удобной и сжатой форме отражать логические и топологические особенности моделируемых объектов, обладающие средствами работы с частями слов, преобразования форматов, записи микропрограмм. К этому подклассу систем относят языки программирования АВТОКОД, ЛОТИС и др.
В большинстве случаев при имитационном моделировании экономических, производственных и других организационных систем управления исследование модели заключается в проведении стохастических экспериментов. Отражая свойства моделируемых объектов, эти модели содержат случайные переменные, описывающие как функционирование самих систем, так и воздействия внешней среды. Поэтому наибольшее распространение получило статистическое моделирование.
Имитационная модель характеризуется наборами входных переменных
наблюдаемых или управляемых переменных
управляющих воздействий
возмущающих воздействий
Состояние системы в любой момент времени
и начальные условия Y(t0), R(t0), W(t0) могут быть случайными величинами, заданными соответствующим распределением вероятностей. Соотношения модели определяют распределение вероятностей величин в момент t + ∆t:
Существуют два основных способа построения моделирующего алгоритма – принцип ∆t и принцип особых состояний.
Принцип ∆t. Промежуток времени (t0, t), в котором исследуется поведение системы, разбивают на интервалы длиной ∆t. В соответствии с заданным распределением вероятностей для начальных условий по априорным соображениям или случайным образом выбирают для начального момента t0 одно из возможных состояний z0(t0). Для момента t0 + ∆t вычисляется условное распределение вероятностей состояний (при условии состояния z0(t0)). Затем аналогично предыдущему выбирают одно из возможных состояний z0(t0 + ∆t), выполняют процедуры вычисления условного распределения вероятностей состояний для момента t0 + 2∆t и т.д.
В результате повторения этой процедуры до момента t0 + n∆t = T получают одну из возможных реализаций исследуемого случайного процесса. Таким же образом получают ряд других реализаций процесса. Описанный способ построения моделирующего алгоритма занимает много машинного времени.
Принцип особых состояний. Все возможные состояния системы Z(t) = {zi(t)} разбивают на два класса – обычные и особые. В обычных состояниях характеристики zi(t) меняются плавно и непрерывно. Особые состояния определяются наличием входных сигналов или выходом, по крайней мере, одной из характеристик zi(t) на границу области существования. При этом состояние системы меняется скачкообразно.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--