Реферат: Импульсная механика
Сергей Тевилин
Импульсная механика рассматривает вопросы взаимодействия материальных тел, движущихся с ускорением и торможением, динамику вращения и кинематику переносного движения в силовых полях СП неинерциальных систем НС.
Основные законы вытекают из эксперимента описанного в [1]. В основе Импульсной механики ИМ (Неинерциальной механики НМ) или механики инерции ускорения и торможения МИУТ лежат 3 закона механики, действующих в неинерциальных системах отсчета НСО:
1. Законы импульсной механики
а) Первый закон - Закон инерции торможения
Скорость изменения импульса Ра = ma м.т. в инерциальном движении равна действующей на нее разности сил инерции F ин и торможения Fт
F ин - F торм = d (ma ) / d t , (1)
где Ра = ma - импульс ускорения м.т., Ра 0.
б) Второй закон - Закон инертного ускорения
Скорость изменения импульса Р а = ma м. т. в ускоренном движении равна действующей на нее разности сил ускорения F у и инертности F инт
F уск - F инт = d (ma ) / d t , (2)
где m -масса м.т. , а - ускорение м.т., Ра 0.
в) Третий закон противодействия внешним силам
F дейст = - F прот = - k Pa (3)
Если, на материальное тело 1 со стороны другого тела 2 действует внешняя сила Fвнеш , то в первом теле возникает сила, противодействующая внешней силе Fпрот = k Pa ,пропорциональная ей и противоположная по направлению, где k -коэффициент противодействия.
(Действие этого закона показано на полученной в опыте осциллограмме: пунктирные линии - действующие силы, сплошные - противодействующие силы, заштрихованная часть - импульс движения Ра).
В классической механике Ньютона коэффициент противодействия k=1. Коэффициент противодействия характеризует среду, в которой движется м.т. На участке ускорения коэффициент характеризует вязкость инертность среды, а на участке торможения ее реактивную инерцию. Подробнее об этом коэффициенте в другой статье этого цикла.
Величину этого коэффицента легко вычислить с помощью осциллограммы в любой момент времени:
- для участка ускорения k инт = Fуск / Fинт при (F уск > Fинт ),
- для участка торможения k ин = Fин / F торм. при (Fин > Fторм).
При движении м.т. коэффициент всегда k > 1.
2. Динамика вращательного движения
Основной закон динамики вращательного движения в традиционной механике формулируется так, что первая производная по времени t от момента импульса L механической системы относительно любой неподвижной точки О равна главному моменту М внешних относительно той же точки О всех внешних сил приложенных к системе:
dL/ dt = M внеш . (4)
Закон динамики вращательного движения аналогичен второму закону неинерциальной импульсной механики d P / dt = F , в котором изменение момента импульса движения dР для тела массой m и ускорением - а по времени dt, заменен на изменение момента импульса вращения dL/dt.
С помощью закона (4) рассматривается регулярная прецессия гироскопа под действием силы тяжести. Симметричным гироскопом называется симметричное твердое тело, быстро вращающееся вокруг оси симметрии, которая может изменять свое направление в пространстве. Гироскоп имеет три степени свободы. Если он закреплен в одной неподвижной точке 0 и совпадает с центром тяжести С гироскопа, то такой гироскоп называется уравновешенным, или астатическим, гироскопом. В противном случае гироскоп называется тяжелым гироскопом. Тяжелый гироскоп под действием момента силы тяжести относительно точки 0 поворачивается вокруг вертикальной оси, описывая коническую поверхность. Такое вращение гироскопа называется регулярной прецессией. Его угловая скорость прецессии имеет вид:
w прец = М тяж / J w собст. (5)
Из выражения видно, что чем больше угловая скорость собственного вращения гироскопа, тем медленнее он прецессирует.
Если точку опоры гироскопа сделать подвижной, поставив гироскоп на плавучую основу, то гироскоп вместе с опорой и центром тяжести гироскопа будет совершать круговые вращения по орбите орбитального радиуса R орб .
Если плавучий гироскоп поставить в свободно падающем лифте, то центр тяжести гироскопа будет перемешаться по винтовой циклоиде. Выражение (5) отображает вращательный цикл тяжелого гироскопа, имеющего собственное w собст и орбитальное вращение wорб , при wпрец = wорб.
w орб = Мвнеш / J w собст , (6)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--