Реферат: Импульсные и цифровые системы авторегулирования

.

Коэффициенты ошибок:


S0 = = Kош (z = 1) = 0 и .

Скоростная ошибка dск = Dx/K, где Dx – разность входного процесса, то есть приращение входного процесса за интервал дискретизации.

Отмеченная разница в переходных характеристиках существенна только при большом шаге квантования. При уменьшении шага квантования переходные характеристики сближаются. К тому же характеристика квантователя может перемещаться по обеим осям из-за помех, возникающих до и после квантователя.

Рис. 13

При малом шаге квантования и произвольном входном воздействии эти режимы могут переходить друг в друга и разница в процессах при различных характеристиках квантователя становится мало ощутимой. В выходном процессе будет присутствовать случайная составляющая, обусловленная процессом квантования. Как уже отмечалось, квантование по уровню является нелинейной операцией. Выходной процесс квантователя uкв [n], как видно из рис. 13, можно представить в виде суммы квантуемого процесса u[n] и так называемого шума квантования hкв [n], а сам квантователь – в виде параллельного соединения линейного устройства с коэффициентом передачи, равным 1 и нелинейного устройства с характеристикой hкв =F(u) (см. рис. 14). Эту характеристику можно получить как разность значений выходного и входного процессов квантователя (рис. 15).

Рис. 14

Когда шаг квантования мал по сравнению с квантуемым процессом, шум квантования приобретает случайный характер и практически теряет связь с видом квантуемого процесса, поэтому его считают стационарным случайным процессом, равномерно распределенным в интервале (-h/2,h/2). Дисперсия этого шума:

.

Более того, значения шума квантования, отстоящие друг от друга на интервал дискретизации, слабо коррелированы, и его считают белым. Тогда ошибку, вызванную шумом квантования, можно рассчитать по импульсной характеристике gз [n]:

или по частотной характеристике замкнутой системы:

либо

,

где , ,

l - абсолютная псевдочастота.

Рассчитанное по любой из этих формул значение дисперсии:

. (25)

Исследование системы проводится на модели, изображенной на рис.16. За основу принята импульсная модель с АИМ-II, исследованная в лабораторной работе № 7, в которую введен квантователь по уровню импульсного сигнала рассогласования. Характеристика квантователя задается значением процессов, подаваемых на сумматоры S1 (до квантователя) и S2 (после квантователя). Если выход источника постоянного воздействия, равного h/2, подсоединен к входу S1 , то реализуется характеристика, изображенная на рис. 10,а, если – к входу S2 , то реализуется характеристика, изображенная на рис. 10,б. Если входы обоих сумматоров свободны, то реализуется характеристика, изображенная на рис. 10,в. Заданный для цифровой системы коэффициент передачи К равен произведению коэффициента передачи интегратора Кинт на длительность импульса t. Для используемой модели t = 0,1 с, поэтому Кинт = К/t = 10К. Интервал дискретизации Т = 1 с.

Рис. 16


Заключение

Формирование систем автоматического регулирования, как правило, выполняют на основе аналитических методов анализа или синтеза. На этом этапе проектирования систем регулирования на основе принятые допущений составляют математическую модель системы и выбирают предварительную ее структуру. В зависимости от типа модели (линейная или нелинейная) выбирают метод расчета для определения параметров, обеспечивающих заданные показатели устойчивости, точности и качества. После этого уточняют математическую модель и с использованием средств математического моделирования определяют динамические процессы в системе. При действии различных входных сигналов снимают частотные характеристики и сравнивают с расчетными. Затем окончательно устанавливают запасы устойчивости системы по фазе и модулю и находят основные показатели качества.

Далее, задавая на модель типовые управляющие воздействия; снимают характеристики точности. На основании математического моделирования составляют технические требования на аппаратуру системы. Из изготовленной аппаратуры собирают регулятор и передают его на полунатурное моделирование, при котором объект регулирования набирают в виде математической модели.

Развитие теории автоматического регулирования на основе уравнений состояния и z-преобразований, принципа максимума и метода динамического программирования совершенствует методику проектирования систем регулирования и позволяет создавать высокоэффективные автоматические системы для самых различных отраслей народного хозяйства. Полученные таким образом системы автоматического регулирования обеспечивают высокое качество выпускаемой продукции, снижают ее себестоимость и увеличивают производительность труда.


К-во Просмотров: 277
Бесплатно скачать Реферат: Импульсные и цифровые системы авторегулирования