Реферат: Индукционная плавка металла
витков индуктора (б, в):
1- латунная шпилька .
2- гайка.
3- витки индуктора
4-стойка из изоляционного материала .
5-стяжной болт .
6-вертикальная рейка.
7-нажимной фланец.
1 Футеровка может быть основной или кислой. Набивную кислую футеровку изготовляют из дробленого кварцита (фракции размером менее 3,5 мм) или кварцевого песка с добавкой в качестве связующего борной кислоты (1,5—4 %) без увлажнения. Для основных тиглей применяют огнеупорные смеси разных составов, наиболее часто магнезитовый порошок; в качестве связки используют огнеупорную глину, жидкое стекло, плавиковый шпат, борную кислоту и др. Применяют как увлажненные, так и сухие смеси. Перед набивкой тигля внутреннюю поверхность индуктора покрывают тонким изолирующим слоем, например, нанося специальную изоляционную обмазку с последующей обклейкой стеклолентой; иногда дополнительно укладывают теплоизоляционный слой из асбеста. На дне индуктора засыпают слой футеровочной массы, утрамбовывают ее и затем устанавливают на нее железный шаблон, наружные размеры которого соответствуют внутренним размерам тигля. В пространство между шаблоном и индуктором засыпают футеровочную смесь и уплотняют ее трамбовками. Затем выполняют воротник из фасонных кирпичей или специальных масс с повышенным количеством связующих.
После окончания набивки футеровку сушат и спекают. Для этого, не вынимая шаблона, включают плавильную установку; тепло, выделяемое в шаблоне, нагревает футеровку. В зависимости от емкости тигля спекание длится от 1 до 4 ч для кислого тигля и от 2 до 10 ч для основного. Окончательное спекание с расплавлением шаблона происходит во время первой плавки. Спекание можно проводить, вставив в тигель соответствующих размеров кусок готового электрода. Тигли емкостью до 300 кг иногда набивают увлажненной массой в специальной разборной пресс-форме. После сушки на воздухе такой тигель устанавливают в индуктор на подовую плиту, а пространство между индуктором и тиглем засыпают мелким огнеупорным порошком.
Стойкость кислых тиглей составляет 20—250 плавок. Основная футеровка обладает меньшей термостойкостью и стойкость основных 'тиглей значительно ниже (от 10 до 100 плавок; меньшая величина — для печей большой емкости). Средний внутренний диаметр тигля От и высоту расплава h(p)определяют исходя из заданной емкости печи (объема металла) с учетом того, что величина отношения Н,,ЮТ должна составлять 1,6—2,0 для 100-кг печи и снижаться при увеличении емкости (до 1,1—1,4 для 6-т печи). Толщину футеровки (м) в середине тигля определяют по формуле: b(ф)~ 0,08 Т(^1/4), где Т — емкость печи, т. Примерные соотношения между размерами тиглей и индукторов сталеплавильных печей приведены в табл. 1. Механизм наклона предназначен для наклона печи при сливе металла. Металл из тигля сливают через сливной носок, поворачивая установленный на двух цапфах каркас печи на угол До 95°. Наклон печи осуществляют лебедками, тельферами, а на крупных печах устанавливают гидравлический механизм наклона.
|
Таблица 1. Размеры индуктора и тигля индукционных печей
Рис. 6.
Упрощенная электрическая
схема индукционной печи.
Емкость,кг | Размеры индуктора, | Размеры тигля, мм | ||||
высота | Внутренний диаметр | глубина | толщина дна |
сверху и снизу | ||
100 | 490 | 410 | 440 | 165 | 50 | 80 |
500 | 790 | 700 | 610 | 215 | 70 | 100 |
8000 | 1300 | 1380 | 1200 | 200 | ПО | 150 |
1400 | 830 | 760 | 720 | 200 | 90 | 130 |
Электрическое оборудование -служит для подачи питания на индуктор индукционной печи. Упрощенная электрическая схема индукционной печи повышенной частоты, питаемой от машинного пли лампового генератора, показана на рис. 6.Переменный ток высокой частоты от генератора через выключатель 2 подается на индуктор 3, параллельно которому подключены конденсаторы 5 и 6. Конденсаторы предназначены для компенсации индуктивного сопротивления индуктора и установки в целом (компенсации реактивной мощности установки). В цепь включены две группы конденсаторов: конденсаторы первой группы 6 подключены постоянно; а конденсаторы второй группы 5 включают в случае необходимости. В процессе плавки по мере нагрева шихты изменяется ее удельное сопротивление и магнитная проницаемость, что изменяет индуктивное сопротивление установки. Включая или отключая дополнительные конденсаторы добиваются равенства индуктивного и емкостного сопротивлений, т.е. величины coos(ф) установки ,близкой к единице. В качестве источников питания (преобразователей частоты) используют ламповые и машинные генераторы, тиристорные преобразователи. Для питания малых печей («30—50 кг) применяют ламповые генераторы, вырабатывающие ток с частотой от 30 кГц до несколько мегагерц; их мощность изменяется от 0,3 до 1000 кВт. Большая часть промышленных печей с тиглями емкостью 60—100 кг и более питаются от машинных генераторов. Их выпускают мощностью от 12 до 2500 кВт с частотой вырабатываемого тока 0,5; 1; 2,4; 4; 8 и 10 кГц. Соотношение между емкостью печи и мощностью генератора примерно следующее:
Емкость, т 0,06 0,4 1,0 6 10 16 25
Мощность, кВт 50 250 500 2500 3000 5000 6000
В последние годы в качестве источников питания все шире применяются тиристорные преобразователи частоты. Промышленность выпускает тиристорные преобразователи мощностью до 3200 кВт с частотой вырабатываемого тока от 0,5 до 10 кГц.
Эти преобразователи обладают по сравнению с машинными генераторами, следующими преимуществами: более высокий электрический к. п. д.; высокая готовность к работе; возможность автоматического поддержания оптимального электрического режима без переключения в силовой цепи (не требуется переключения конденсаторов, что упрощает конструкцию конденсаторной батареи); отсутствие вращающихся частей и бесшумность в работе.
В состав электрооборудования индукционной печи входят также подключаемые к силовой цепи через трансформаторы тока и напряжения электроизмерительные приборы и приборы защиты (от перегрузок по току и напряжению и в случае отключения охлаждающей воды). Крупные индукционные печи снабжены автоматическим регулятором, который поддерживает оптимальный электрический режим путем взаимосвязанного регулирования коэффициента мощности, напряжения и силы тока. Основные параметры работы электрооборудования (мощность генератора, емкость конденсаторов, требуемая частота тока и другие) определяют расчетом исходя из заданных емкости печи, длительности плавления, температуры жидкого металла.
Индукционные печи промышленной частоты
Футеровка и индуктор печей промышленной частоты такие же, как у печей повышенной частоты. В схеме электропитания отсутствует генератор тока повышенной частоты; печь включается в сеть через ступенчатый понижающий трансформатор с вторичным напряжением от 100 до 1000 В. Ввиду отсутствия преобразователя частоты для этих печей характерен меньший (на 5—10 %) удельный расход электроэнергии и более высокий коэффициент мощности.
Однако при низкой частоте питающего тока (50 Гц) у этих печей интенсивность электродинамического перемешивания металла значительно выше, чем в печах повышенной частоты. Чтобы избежать чрезмерной циркуляции металла, печи промышленной частоты рассчитывают на меньшую удельную мощность, чем печи повышенной частоты; такой мощности недостаточно для быстрого расплавления стальной шихты. Поэтому печи промышленной частоты обычно используют для плавки металлов с более низкой температурой плавления (чугуна, цветных металлов). Мощность печи емкостью 1 т составляет 360 кВ-А, емкостью 25 т — 4800 кВ-А.
Технология плавки