Реферат: Информационные технологии решения задач векторной оптимизации
Рассмотрим следующую задачу векторной оптимизации:
,
где целевые функции и соответствующие им ограничения имеют вид:
Решим задачу в Excel и проанализируем зависимость получаемого решения от значения коэффициентов .
Внесем данные на рабочий лист в соответствии с Рис. 5.1. Под значения переменных отведем ячейки A16:C16. В ячейки A6:A8 и A10:A12 введем формулы, определяющие ограничения на значения переменных, в ячейки E16 и G16 – формулы для расчета соответствующих целевых функций, в ячейку F20 – формулу для расчета функции .
Чрезвычайно важным является использование в данном методе общей для всех функций системы ограничений.
Рис. 1. Данные для решения примера 1
Вызовем Поиск решения и зададим область изменения переменных, целевую ячейку и систему ограничений стандартным образом. В результате получим ответ: (для данных значений параметров (см. Рис. 1)) Полагая значения параметров равными, например, получим другое оптимальное значение исследуемой функции Таким образом, можно сделать вывод о весьма существенной чувствительности значений данной оптимизируемой функции к вариациям весовых коэффициентов.
Пример 2. Ограничения на критерии. Метод последовательных уступок.
Ограничимся для простоты задачей линейной оптимизации (линейного программирования).
Пусть необходимо решить задачу векторной оптимизации следующего вида:
при ограничениях:
методом последовательных уступок, если уступка по первому критерию составляет 10% от его оптимального значения.
Решение . Решим задачу по критерию , в результате чего получим . В соответствии с условием задачи величина уступки . Дополнительное ограничение будет иметь вид: , т.е. . Решая задачу
получим
.
Проведем решение задачи с помощью Excel. Введем данные на рабочий лист в соответствии с Рис.2.
Отведем под значения переменных ячейки A19 и B19, введем формулы, определяющие ограничения исходной задачи, в ячейки A13:A15; формулу для целевой функции в ячейку E19, а формулу для расчета в ячейку H19. Поиск решения дает значение . Далее, копируем значение из ячейки E19 в ячейку С26 (используется специальная вставка – только значение). Затем отводим под целевую ячейку E26, вводим в нее формулу для расчета , а в ячейку A26 вводим формулу =A19+3*B19, представляющую собой дополнительное ограничение задачи.
При вторичном запуске Поиска решения наряду с уже введенными на первом этапе ограничениями вводим еще одно дополнительное ограничение A26>=144.
В результате расчета получим ответ:
.
Рис. 2. Данные для решения задачи оптимизации по методу последовательных уступок
Пример 3. Целевое программирование.