Реферат: Ионизирующие излучения, их характеристики и методы измерений
Ионизирующее излучение (ИИ) – это излучение, взаимодействие которого со средой приводит к образованию в этой среде ионов разных знаков. Излучение считается ионизирующим, если оно способно разрывать химические связи молекул. Ионизирующее излучение делят на корпускулярное и фотонное.
Радиоволны, световые волны, тепловая энергия Солнца не относятся к ионизирующим излучениям, так как они не вызывают повреждения организма путем ионизации.
Корпускулярное – это поток частиц с массой отличной от нуля (электроны, протоны, нейтроны, альфа-частицы).
Фотонное – это электромагнитное излучение, косвенно ионизирующее излучение (гамма излучение, характеристическое излучение, тормозное излучение, рентгеновское излучение, аннигиляционное излучение).
Альфа-излучение – это поток альфа-частиц (ядер атомов гелия), испускаемых при радиоактивном распаде, а также при ядерных реакциях и превращениях. Альфа-частицы обладают сильной ионизирующей способностью и незначительной проникающей способностью. В воздухе они проникают на глубину несколько сантиметров, в биологической ткани – на глубину доли миллиметра, задерживается листом бумаги, тканью одежды. Альфа-излучение особо опасно при попадании его источника внутрь организма с пищей или с вдыхаемым воздухом.
Бета-излучение – это поток электронов или позитронов, испускаемых ядрами радиоактивных элементов при бета-распаде. Их ионизирующая способность меньше, чем у альфа-частиц, но проникающая способность во много раз больше, и составляет десятки сантиметров. В биологической ткани они проникают на глубину до 2 см, одеждой задерживается только частично. Бета-излучение опасно для здоровья человека, как при внешнем, так и при внутреннем облучении.
Протонное излучение – это поток протонов, составляющих основу космического излучения, а также наблюдаемых при ядерных взрывах. Их пробег в воздухе и проникающая способность занимают промежуточное положение между альфа и бета-излучением.
Нейтронное излучение – поток нейтронов, наблюдаемых при ядерных взрывах, особенно нейтронных боеприпасов и работе ядерного реактора. Последствия его воздействия на окружающую среду зависят от начальной энергии нейтрона, которая может меняться в пределах 0,025 –300 МэВ.
Гамма-излучение – электромагнитное излучение (длина волны 10–10 –10–14 м), возникающее в некоторых случаях при альфа и бета-распаде, аннигиляции частиц и при возбуждении атомов и их ядер, торможении частиц в электрическом поле. Проникающая способность гамма-излучения значительно больше, чем у вышеперечисленных видов излучений. Глубина распространения гамма-квантов в воздухе может достигать сотен и тысяч метров. Ионизирующая способность (косвенная) значительно меньше, чем у вышеперечисленных видов излучений. Большинство гамма-квантов проходит через биологическую ткань, и только незначительное количество поглощается телом человека.
Тормозное излучение – фотонное излучение с непрерывным энергетическим спектром, испускаемое при уменьшении кинетической энергии заряженных частиц. Воздействие на окружающую среду такое, как и гамма-излучения.
Характеристическое излучение – фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома. Воздействие на биологическую ткань аналогично гамма-излучению.
Аннигиляционное излучение – фотонное излучение, возникающее в результате аннигиляции частицы и античастицы (например, позитрона и электрона). Воздействие на биологическую ткань аналогично гамма-излучению.
Рентгеновское излучение – фотонное излучение (длина волны 10–-9 –10–-12 м), состоящее из тормозного и (или) характеристического излучения, генерируемого рентгеновскими аппаратами, и возникающее при некоторых ядерных реакциях. В отличие от гамма-излучения оно обладает такими свойствами как отражение и преломление.
Взаимодействие ионизирующих излучений с веществом
Альфа-частицы, бета-частицы, выброшенные из ядра, обладают значительной кинетической энергией и, воздействуя на вещество, с одной стороны производят его ионизацию, а с другой проникают на определенную глубину. Взаимодействуя с веществом, они теряют эту энергию, в основном, в результате упругих взаимодействий с ядрами атомов или электронами, отдавая им всю или часть своей энергии, вызывая ионизацию или возбуждение атомов (т.е. перевод электрона с более близкой на более удаленную от ядра орбиту). Ионизация и проникновение на определенную глубину имеют принципиальное значение для оценки воздействия ионизирующего излучения на биологическую ткань различных видов излучений. Зная свойства различных видов излучений проникать через разные материалы, последние можно использовать как для защиты человека, так и некоторых объектов, приборов и т.д.
Результаты взаимодействия ионизирующего излучения с веществом зависят: от массы, заряда потока частиц и их энергий; от вида фотонов и их энергий; от типа и плотности вещества; от значения энергий внутримолекулярных сил облучаемого вещества.
Взаимодействие ионизирующего излучения с веществом зависит от соотношения масс и энергий частиц и может носить упругий или неупругий характер.
С учетом выше сказанного можно сделать некоторые выводы:
· заряженные частицы, проходящие через вещество, взаимодействуют как с орбитальными электронами атома, так и с его ядром;
· при взаимодействии с орбитальными электронами, энергия частиц растрачивается на ионизацию атомов, если она не менее 35 эВ и на возбуждение атомов (перевод электрона с ближней орбиты на более удаленную), если она менее 35 эВ;
· в процессе ионизации атома образуются заряженные частицы (свободные электроны), а атомы, потерявшие один или несколько электронов, превращаются в положительно заряженные ионы;
· при взаимодействии с ядром заряженная частица может или тормозиться электрическим полем ядра и менять свое направление движения или поглощаться ядром. В первом случае происходит испускание тормозного излучения, во втором случае заряженная частица (при достаточно большой энергии) поглощается ядром, при этом выбрасываются элементарные частицы и фотоны. Поглощение частицы ядром обычно происходит, если энергия частицы превышает 1,02 МэВ.
Процесс взаимодействия, при котором исчезают первоначальные и появляются новые частицы, называют ядерной реакцией. Рассмотрим взаимодействие различных видов излучений с веществом.
Гамма-излучение
Взаимодействие гамма-квантов с веществом может сопровождаться фотоэффектом , комптоновским рассеянием и образованием электрон-позитронных пар . Вид эффекта зависит от энергии гамма-кванта:
Ек = hν – Еи , (1)
где: h – постоянная Планка; ν – частота излучения; Еи – энергия ионизации соответствующей атомной оболочки (энергия связи выбитого электрона из атома).
Фотоэффект возникает при Е = 10 эВ–1 МэВ, то есть при относительно малых значениях энергий. В этом случае вся энергия гамма-кванта передается орбитальному электрону, и он выбивается из орбиты (рис.3).
Выбитый электрон называется фотоэлектроном. В результате его отрыва в атоме появляется свободный уровень, который заполняется одним из наружных электронов. При этом, либо испускается вторичное мягкое характеристическое излучение (процесс флюоресценции), либо энергия передается одному из электронов, который покидает атом (электрон Оже ). Флюоресцентное излучение наблюдают в материалах с большим атомным номером. В материалах с низким атомным номером преобладает образование электронов Оже. Вероятность фотоэффекта увеличивается с ростом атомного номера материала и уменьшается с ростом энергии фотона.
С ростом энергии гамма-квантов явление фотоэффекта становится все меньше, а при энергии 100–200 кэВ начинает преобладать К омптон эффект.
Комптоновским рассеиванием называется процесс взаимодействия фотонного излучения с веществом, в котором фотон в результате упругого столкновения с орбитальным электроном теряет часть своей энергии и изменяет направление своего первоначального движения, а из атома выбивается электрон отдачи (комптоновский электрон) (рис.4).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--