Реферат: Ионизирующие излучения, их характеристики и методы измерений
Одним из вариантов неупругого взаимодействия является К–захват.
Таким образом, процессы взаимодействия бета-частиц со средой характеризуются радиационным торможением и относительно большой потерей энергии или значительным изменением направления их движения в элементарном акте. Вследствие этого взаимодействия интенсивность пучка бета-частиц уменьшается почти по экспоненте с ростом толщины поглощающего слоя х , т.е. для бета-частиц справедлива формула (3).
Путь бета-частиц в веществе представляет ломаную линию, а пробег бета-частиц одинаковых энергий имеет значительный разброс. Это связано с тем, что масса бета-частиц крайне мала, поэтому вероятность упругого рассеяния на ядрах больше, чем у тяжелых частиц. В таблице 2 показана средняя глубина пробега бета-частиц в воздухе, биологической ткани и для примера в алюминии.
· Итак, бета-частицы не имеют точной глубины проникновения, так как обладают непрерывным энергетическим спектром. Для грубой оценки глубины пробега бета-частиц пользуются приближенными формулами. Одна из них:
R ср /Rвозд = r возд / r ср (7)
где: Rср – длина пробега в среде; Rвозд – длина пробега в воздухе, Rвозд = 450 Eb ; rвозд и rср – плотность воздуха и среды соответственно; Eb – энергия бета-частиц.
Альфа-излучение
· Энергия альфа-частиц находится в пределах 4–10 МэВ, скорость примерно 20000 км/с. Имея большую массу и значительную энергию, они ее расходуют в основном на неупругое рассеяние на электронах атомов. Таким образом, альфа-частицы обладают большой ионизирующей способностью. В редких случаях альфа-частица может проникнуть в ядро и вызвать ядерную реакцию. Полная ионизация, создаваемая альфа-частицами на всем пути в среде, составляет примерно 120–150 тысяч пар ионов.
Таблица 2 Пробеги бета-частиц
Максимальная энергия бета-частиц, Е, МэВ | Воздух, см | Биологическая ткань, мм | Алюминий, мм |
0,01 | 0,13 | 0,002 | 0,0006 |
0,02 | 0,52 | 0,008 | 0,0026 |
0,03 | 1,12 | 0,018 | 0,0056 |
0.04 | 1,94 | 0,030 | 0,0096 |
0,05 | 2,91 | 0,046 | 0,0144 |
0,06 | 4,03 | 0,063 | 0.0200 |
0.07 | 5,29 | 0,083 | 0,0263 |
0,08 | 6,93 | 0,109 | 0,0344 |
0,09 | 8,20 | 0,129 | 0,0407 |
0,1 | 10,1 | 0,158 | 0,050 |
0,5 | 119 | 1,87 | 0,593 |
1,0 | 306 | 4,80 | 1,52 |
1,5 | 494 | 7,80 | 2,47 |
2,0 | 710 | 11,1 | 3,51 |
2,5 | 910 | 14,3 | 4,52 |
3,0 | 1100 | 17,4 | 5,50 |
5,0 | 1900 | 29,8 | 9,42 |
10 | 3900 | 60,8 | 19,2 |
Удельная ионизация изменяется от 25 до 60 тысяч пар ионов на 1 см пути в воздухе. Удельная ионизация увеличивается к концу пробега альфа-частиц. Это связано с тем, что при прохождении через вещество энергия альфа-частицы, а значит, и ее скорость уменьшается. В результате увеличивается вероятность ее взаимодействия с электронами атома. Это приводит к увеличению ионизации вещества, достигая максимума в конце пробега.
Альфа-частицы, имея двойной электрический заряд и большую массу буквально "продираются" через атомы вещества. Вследствие сильных потерь энергии альфа-частицы проникают на незначительную глубину.
В отличие от фотонов и бета-частиц длина пробега альфа-частиц экспоненциальному закону не подчиняется. Поэтому пользуются империческими формулами. Так, например, для воздуха при 0°С и давлении 760 мм рт. ст. (0,1Па), длина пробега альфа-частиц с энергией от 3 до 8 МэВ может быть рассчитана по формуле Гейгера :
R a = ( E a 2/3 ) /3, (см) (8)
Длина пробега R α альфа-частиц в воздухе при температуре 15°С и давлении 0,1 Па определяется по формулам:
R a = 0,318 E a 2/3 , (см) – если E a = (4–7) МэВ ; (9)
R a = 0,56 E a 2/3 , (см) – если E a < 4 МэВ . (10)
где: Ea – энергия альфа-частиц.
Пробег альфа-частиц в веществе, отличном от воздуха определяют по формуле Брэгга :
R a = 10–4 ( M E a 3 )1/2 / r , см (11)
где: М – атомная масса; r – плотность вещества, г/см3 .
Расчет по приведенным формулам показывает, что пробег альфа-частиц в воздухе не превышает 10 см, а в биологической ткани 120 мкм, т.е. реальную опасность альфа частицы представляют при попадании их во внутрь организма.
В таблице 3 показана длина пробега альфа-частиц в воздухе, биологической ткани и алюминии. Алюминий взят в качестве примера, так как именно металлы чаще всего применяются для защиты человека и электронных схем от ионизирующих излучений.
· Сравнительная характеристика способности проникновения излучений через различные вещества с учетом толщины преграды поясняется рис.11.
Таблица 3 Пробеги альфа-частиц в воздухе, биологической ткани и алюминии
Энергия альфа частиц Еα, МэВ | Воздух, см | Биологическая ткань, мкм | Алюминий, мкм |
4,0 | 2,5 | 31 | 16 |
4,5 | 3,0 | 37 | 20 |
5,0 | 3,5 | 43 | 23 |
6,0 | 4,6 | 56 | 30 |
7,0 | 5,9 | 72 | 38 |
8,0 | 7,4 | 91 | 48 |
9,0 | 8,9 | 110 | 58 |
10 | 10,6 | 130 | 69 |
Характеристики ионизирующих излучений. Единицы измерения
Для установления закономерностей распространения и поглощения ионизирующих излучений в среде, в том числе и в биологической ткани, введены следующие основные характеристики: энергия частиц и гамма-квантов, плотность потока частиц (фотонов), флюенс-частиц (фотонов), поглощенная доза, мощность поглощенной дозы, керма, экспозиционная доза фотонного излучения, мощность экспозиционной дозы, эквивалентная доза, мощность эквивалентной дозы, эффективная доза, полувековая эквивалентная доза, коллективная эквивалентная доза и др.
Рассмотрим только некоторые характеристики, которые будут использованы на практических занятиях.
Энергия частиц или гамма-квантов – Е выражается в Джоулях или электрон-вольтах (эВ) . Величина Джоуль используется в системе СИ, электрон вольт (эВ) – внесистемная единица.